Хорошо, вам не объяснили толково что такое вообще математическая логика, но это на самом деле нормальный случай, сами дают и не знают, что дают. Давайте разберемся. Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю. В данном случае за утверждение принимается: A - предположение, говорящее, что Первая буква гласная. B - предположение, говорящее, что Последняя буква согласная. Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры"). Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь). Давайте запишем как нужно само выражение. -A∧-B (вместо минусов нужно черточку над буквой). Таблица истинности выглядит так: В наименованиях столбцов пишите A и B и ваше выражение третьим. Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1. "НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот. "И" - дает 1 если оба операнда 1, иначе дает 0. "ИЛИ" - дает 0 если оба операнда 0, иначе дает 1. Вот и все. Заполняете и получаете нужное.
В решении.
Объяснение:
упростите дробно - рациональное выражение:
1) х⁷+х⁵/х⁴+х² =
= (х⁵(х² + 1))/(х²(х² + 1)) =
сократить (разделить) (х² + 1) и (х² + 1) на (х² + 1), х⁵ и х² на х²:
= х³;
2) у⁷+у⁹/у⁴+у² =
= (у⁷(1 + у²))/(у²(1 + у²)) =
сократить (разделить) (1 + у²) и (1 + у²) на (1 + у²), у⁷ и у² на у²:
= у⁵;
3) а⁷-а¹⁰/а⁵-а² =
= (а⁷(1 - а³))/(а²(а³ - 1)) =
= (-а⁷(а³ - 1))/(а²(а³ - 1)) =
сократить (разделить) (а³ - 1) и (а³ - 1) на (а³ - 1), а⁷ и а² на а²:
= -а⁵;
4) х⁶-х⁴/х³+х² =
в числителе разность квадратов, разложить по формуле:
=(х³ - х²)(х³ + х²)/(х³ + х²) =
сократить (разделить) (х³ + х²) и (х³ + х²) на (х³ + х²):
= (х³ - х²);
5) а-2b/2b-а =
= (-(2b - a))/(2b - a) =
= -1;
6) 4(a-b)²/2b-2a =
= (4(a - b)(a - b))/ (-2(a - b)) =
сократить (разделить) (a - b) и (a - b) на (a - b), 4 и 2 на 2:
= (2(a - b))/(-1) =
= -2(a - b);
7) (-a-b)²/a+b =
= (a + b)²/(a + b) =
= (a + b)(a + b)/(a + b) =
сократить (разделить) (a + b) и (a + b) на (a + b):
= (a + b);
8) (a-b)²/(b-a)² =
= (a - b)²/(-a + b)² =
= 1.
Давайте разберемся.
Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю.
В данном случае за утверждение принимается:
A - предположение, говорящее, что Первая буква гласная.
B - предположение, говорящее, что Последняя буква согласная.
Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры").
Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь).
Давайте запишем как нужно само выражение.
-A∧-B (вместо минусов нужно черточку над буквой).
Таблица истинности выглядит так:
В наименованиях столбцов пишите A и B и ваше выражение третьим.
Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1.
"НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот.
"И" - дает 1 если оба операнда 1, иначе дает 0.
"ИЛИ" - дает 0 если оба операнда 0, иначе дает 1.
Вот и все. Заполняете и получаете нужное.