В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Лера089
Лера089
27.09.2022 14:33 •  Алгебра

Укажи степень данного уравнения х^3у^2+2ху-7х^4у=0

Показать ответ
Ответ:
mikhdina24
mikhdina24
11.08.2021 17:06

Задать вопрос

Войти

АнонимГеометрия13 мая 17:10

треугольник MNP равнобедренный. один из углов равен 112 градусам. найти углы

ответ или решение1

Боброва Кира

Рассмотрим два возможный случая.

1 случай.

Данный угол величиной 112° является углом при вершине данного равнобедренного треугольника.

Тогда два других угла при основании будут равны между собой.

Обозначим через x величину этих углов.

Так как при сложении величин всех трех углов всякого треугольника в результате получается 180°, можем составить следующее уравнение:

х + х + 112 = 180,

решая которое, получаем:

2х + 112 = 180;

(2х + 112) / 2 = 180 / 2;

х + 56 = 90;

х = 90 - 56 = 34°.

2 случай.

Данный угол величиной 112° является углом при основании данного равнобедренного треугольника.

Тогда другой угол при основании также должен составлять 112°.

Так как суммы этих двух углов, равная 112 + 112 = 224° больше 180°, то такого треугольника не существует.

ответ: 112°, 54°, 54°.

0,0(0 оценок)
Ответ:
timursharipov2
timursharipov2
19.04.2023 19:45

Для решения запишем формулу бинома Ньютона:

(a+b)^n=a^n+C_n^1a^{n-1}b+C_n^2a^{n-2}b^2+...+b^n

Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение a^n.

Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение b^n.

Рассмотрим многочлен S(x)=P(x)\cdot Q(x), где:

P(x)=(3x^7+6x^4-1)^{12}

Q(x)=(5x^2+2)^3

Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.

Для многочлена P(x)=(3x^7+6x^4-1)^{12}:

- степень определяется выражением (3x^7)^{12}=3^{12}\cdot x^{7\cdot12}=3^{12}\cdot x^{84}, то есть степень равна 84

- свободный член равен (-1)^{12}=1

Для многочлена Q(x)=(5x^2+2)^3:

- степень определяется выражением (5x^2)^3=5^3\cdot x^{2\cdot3}=125\cdot x^6, то есть степень равна 6

- свободный член равен 2^3=8

Наконец, для многочлена S(x)=P(x)\cdot Q(x) получим:

- степень определяется выражением x^{84}\cdot x^6=x^{84+6}=x^{90}, то есть степень равна 90

- свободный член равен 1\cdot8=8

Сумма степени и свободного члена многочлена S(x):

90+8=98

ответ: 98

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота