ОДЗ - это Область Допустимых Значений. Это такие значения переменных (в нашем случае х), при которых не происходит разных неприятностей, таких как деление на ноль, извлечения квадратного корня из отрицательного числа и т.п. У нас функций нет, только дроби. А у дробей неприятности могут быть только при обращения знаменателя в ноль. Записаны дроби у Вас без скобок, следовательно, тут работают приоритеты операций. И в соответствии с ними Ваше выражение имеет вид
Тут ОДЗ очевидно: х≠0
Но, скорее всего, у Вас иное выражение, например, такое:
Тогда при его записи "в строку" надо было использовать круглые скобки: 1/(х-1) + 1/(х²-1) = 5/8 В этом случае первый знаменатель обращается в 0 при х=1, а второй - при х=1 и х=-1. Объединяя условия получаем, что х≠-1 и х≠1, что равносильно |x|≠1. Это же можно записать "более математически": x ∈ [-∞;-1) ∩ (-1;1) ∩ (1;∞]
1) −0,8z5(1,2m5−2,5z) = -0.96z5m5+2z6
2) 11p3d(d3p−d3)=11p4d4−11p3d4
3) x9y2z(x2+10y2+7z2)=)x11y2z+10x9y4z+7x9y2z3
4) (4a3−3b)⋅2b−3b⋅(14a3−4b)=8a³b-6b²-42a³b+12b²= -34a³b+6b²
5) −9t2(2t5−3k)+5(4t7−2k)=-18t7+27t²k+20t7-10k=2t7+27t²k-10k
6) 13ab(14a²−b2)+14ab(b²−13a²)=182a³b-13ab³+14ab³=182a³b=ab³
10*(-2)³=10*(-8)=-80
7) 0,8(4a+3b)−6(0,3a+0,8b)=3.2a+2.4b-1.8a-4.8b=1.4а-2.4b
1.4*2-2.4*(-4)=2.8+9.6=12.4
8) 3x−ay+bz=3*(5с3+2)-3с(6с2-с+14)+15с3*(5с-1)=15с3+6-18с3+3с2-42с+75с4-15с3=75с4+(-18с3)+3с2+(-42с)+6
Объяснение:
Это такие значения переменных (в нашем случае х), при которых не происходит разных неприятностей, таких как деление на ноль, извлечения квадратного корня из отрицательного числа и т.п.
У нас функций нет, только дроби. А у дробей неприятности могут быть только при обращения знаменателя в ноль.
Записаны дроби у Вас без скобок, следовательно, тут работают приоритеты операций. И в соответствии с ними Ваше выражение имеет вид
Тут ОДЗ очевидно: х≠0
Но, скорее всего, у Вас иное выражение, например, такое:
Тогда при его записи "в строку" надо было использовать круглые скобки:
1/(х-1) + 1/(х²-1) = 5/8
В этом случае первый знаменатель обращается в 0 при х=1, а второй - при х=1 и х=-1. Объединяя условия получаем, что х≠-1 и х≠1, что равносильно
|x|≠1.
Это же можно записать "более математически":
x ∈ [-∞;-1) ∩ (-1;1) ∩ (1;∞]