1)
2)
3)
1) y=x²+10 - парабола , поднятая на 10 точек вверх, координаты вершины (0;10)
2) y=x²-5 - парабола, на 5 точек вниз, координаты вершины (0;-5)
3) y=(x+7)² - парабола, передвинутая на 7 точек влево, вершина (-7;0)
4) y=(x-8)²-парабола, передвинутая на 8 точек вправо, вершина (8;0)
4) y=x²
1) y=x²+5
2)y=x²-4
3)y=(x-3)²
4)y=(x+6)²
5)
На фото, c Ox пересекается график функции y=x²-4.
Точки пересечения с Ox (-2;0) и (2;0)
И y=x²-1
Точки пересечения с Ox (-1;0) и (1;0)
С Oy : y=x²-1, (0;-1)
y=x²+2,5 , (0;2,5)
y=x²-4, (0;-4)
y=x²+4,5, (0;4,5)
Приравняем выражения под модулями к нулю, чтобы найти граничные значения x
1) x + 3 = 0
x = -3
2) 2 - x = 0
x = 2
Рассмотрим три промежутка значений x:
1) x ∈ (-∞; -3]
2) x ∈ (-3; 2]
3) x ∈ (2; +∞)
1) x ∈ (-∞; -3]
-(x + 3) - (2 - x) ≥ 5x - 3
-x - 3 - 2 + x ≥ 5x - 3
-2 ≥ 5x
5x ≤ -2
x ≤ -0,4
x ∈ (-∞; -3]
2) x ∈ (-3; 2]
(x + 3) - (2 - x) ≥ 5x - 3
x + 3 - 2 + x ≥ 5x - 3
2x + 1 ≥ 5x - 3
3x ≤ 4
x ≤ 4/3
x ≤ 1+1/3
x ∈ (-3; 1+1/3]
3) x ∈ (2; +∞)
(x + 3) + (2 - x) ≥ 5x - 3
x + 3 + 2 - x ≥ 5x - 3
5 ≥ 5x - 3
5x ≤ 8
x ≤ 1,6
x ∈ ∅
Объединяем все решения
ответ: x ∈ (-∞; 1+1/3]
1)
2)
3)
1) y=x²+10 - парабола , поднятая на 10 точек вверх, координаты вершины (0;10)
2) y=x²-5 - парабола, на 5 точек вниз, координаты вершины (0;-5)
3) y=(x+7)² - парабола, передвинутая на 7 точек влево, вершина (-7;0)
4) y=(x-8)²-парабола, передвинутая на 8 точек вправо, вершина (8;0)
4) y=x²
1) y=x²+5
2)y=x²-4
3)y=(x-3)²
4)y=(x+6)²
5)
На фото, c Ox пересекается график функции y=x²-4.
Точки пересечения с Ox (-2;0) и (2;0)
И y=x²-1
Точки пересечения с Ox (-1;0) и (1;0)
С Oy : y=x²-1, (0;-1)
y=x²+2,5 , (0;2,5)
y=x²-4, (0;-4)
y=x²+4,5, (0;4,5)