Укажите многочлен, который нужно вставить вместо знака *, чтобы равенство 25x6+20xЗу2+4y=(*)? стало тождеством. Укажите правильный вариант ответа: О5x-2y? 25х3+4y? 25x9-4у2 5x+2y2
По окончанию рейса теплоходы возвращаются обратно и сразу отправляются в новый рейс. Первый теплоход обрачивается за 15 дней, второй - за 24 дня (наверно, в разные пункты ходят). Если их периоды кратны некоторому числу, то в какие-то дни они будут вновь уходить в рейс в один и тот же день. При переводе с житейского на математический это означает, что нужно найти наименьшее общее кратное двух чисел 15 и 24. Для этого можно выписывать для каждого числа в подряд кратные числа, пока не будет совпадения. Но мы пойдём другим путём, а именно, разложим наши числа на простые множители: 15 = 3 * 5 24 = 2 * 2 * 2 * 3 Как видно, наши числа различаются двумя множителями: 5 нет в числе 24, а в числе 15 нет трёх двоек. Поэтому можно, или 15 умножить на 8 и получить 120, или 24 усножить на 5 и получить те же 120. Итак, через 120 дней теплоходы вновь отправятся вместе. За это время первый теплоход сделает 120:15 = 8 рейсов, а второй - 120:24 = 5 рейсов
При переводе с житейского на математический это означает, что нужно найти наименьшее общее кратное двух чисел 15 и 24. Для этого можно выписывать для каждого числа в подряд кратные числа, пока не будет совпадения. Но мы пойдём другим путём, а именно, разложим наши числа на простые множители:
15 = 3 * 5
24 = 2 * 2 * 2 * 3
Как видно, наши числа различаются двумя множителями: 5 нет в числе 24, а в числе 15 нет трёх двоек. Поэтому можно, или 15 умножить на 8 и получить 120, или 24 усножить на 5 и получить те же 120.
Итак, через 120 дней теплоходы вновь отправятся вместе.
За это время первый теплоход сделает 120:15 = 8 рейсов, а второй - 120:24 = 5 рейсов
ответ:: S6 = 10,2
Объяснение:
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.