В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Бекзатажеси
Бекзатажеси
02.08.2020 02:40 •  Алгебра

Укажите наименьшее значение функции f(x)=sin2x+2cosx на отрезке [π/2; π] .у меня получается -2. но это ведь не правильно?

Показать ответ
Ответ:
maksi71
maksi71
11.08.2020 07:48

f(x)=sin(2x)+2*cosx [π/2;π].

f`(x)=2*cos(2x)-2*sinx=0

2*(cos²x-sin²x)=2*sinx |÷2

1-sin²x-sin²x=sinx

2*sin²x+sinx-1=0

Пусть sinx=t ⇒

2t²+t-1=0 D=9 √D=3

t₁=-1 ⇒ sinx=-1 x₁=3π/2 ∉[π/2;π]

t₂=1/2 ⇒ sinx=1/2 x₂=π/6 ∉[π*2;π] x₃=5π/6 ∈[π/2;π].

f(π/2)=sin(2*π/2)+2*cos(π/2)=sin(π)+2*0=0.

f(π)=sin(2π)+2*cosπ=0+2*(-1)=-2.

f(5π/6)=sin(2*5π/6)+2*cos(5π/6)=sin(5π/3)+2*(-√3/2)=-√3/2-√3=-3*√3/2=-1,5*√3.

ответ: наименьшее значение функции на интервале [π/2;π] =-1,5*√3 (≈-2,6).

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота