Так как плоскость KCNM перпендикулярна к ребру АЕ, то стороны МК и МN, а также диагональ СМ сечения KCNM перпендикулярны к АЕ. Так как диагональ СМ лежит в плоскости равнобедренного треугольника AЕС, то она пересекает прямую EO, являющуюся высотой этого треугольника. С другой стороны, диагональ KN, лежащая в плоскости треугольника BED (и, как сейчас будет доказано, параллельная основанию BD этого треугольника), тоже пересекает прямую ЕО, являющуюся высотой треугольника BED. А так как плоскость KCNM имеет с прямой ОЕ только одну общую точку О1, то в этой точке диагонали KN и МС пересекаются друг с другом.
Плоскость KCNM перпендикулярна к ребру АЕ; потому углы ЕМК и EMN - прямые. Прямоугольные треугольники ЕМК и EMN равны (доказать!); следовательно, MK=MN и EK=ЕN. Из последнего равенства вытекает, что KN||BD и что KО1 = О1N. Следовательно, диагонали МС и KN взаимно перпендикулярны и, значит, Scеч. = 1/2МС • KN.
Диагональ МС находим из прямоугольного треугольника АМС, где
∠ CAM = φ и AC = a√2 . Получаем МС = a√2 sin φ.
Диагональ KN находим из равнобедренного треугольника KEN, где ∠ EKN = φ. Имеем КN = 2 • О1E • ctg φ, где О1E = ОЕ - ОО1 . Отрезок ОЕ определяется из треугольника АОЕ (или ВОЕ); находим . Отрезок же OO1 определяется из треугольника ОСО1 , где ∠ OCO1 = 90°- ^MAС = 90° - φ.
Объяснение:
Так как плоскость KCNM перпендикулярна к ребру АЕ, то стороны МК и МN, а также диагональ СМ сечения KCNM перпендикулярны к АЕ. Так как диагональ СМ лежит в плоскости равнобедренного треугольника AЕС, то она пересекает прямую EO, являющуюся высотой этого треугольника. С другой стороны, диагональ KN, лежащая в плоскости треугольника BED (и, как сейчас будет доказано, параллельная основанию BD этого треугольника), тоже пересекает прямую ЕО, являющуюся высотой треугольника BED. А так как плоскость KCNM имеет с прямой ОЕ только одну общую точку О1, то в этой точке диагонали KN и МС пересекаются друг с другом.
Плоскость KCNM перпендикулярна к ребру АЕ; потому углы ЕМК и EMN - прямые. Прямоугольные треугольники ЕМК и EMN равны (доказать!); следовательно, MK=MN и EK=ЕN. Из последнего равенства вытекает, что KN||BD и что KО1 = О1N. Следовательно, диагонали МС и KN взаимно перпендикулярны и, значит, Scеч. = 1/2МС • KN.
Диагональ МС находим из прямоугольного треугольника АМС, где
∠ CAM = φ и AC = a√2 . Получаем МС = a√2 sin φ.
Диагональ KN находим из равнобедренного треугольника KEN, где ∠ EKN = φ. Имеем КN = 2 • О1E • ctg φ, где О1E = ОЕ - ОО1 . Отрезок ОЕ определяется из треугольника АОЕ (или ВОЕ); находим . Отрезок же OO1 определяется из треугольника ОСО1 , где ∠ OCO1 = 90°- ^MAС = 90° - φ.
угол при основании данного треугольника может быть равен 15° или 75°.
Объяснение:
Дан равнобедренный ΔABC, AB — основание. ∠A = ∠B.
1-й случай: биссектриса угла при основании (AD), высота из вершины на основание тр-ка (CH). ∠AEH = 75°.
Так как CH — высота, тогда ΔAEH — прямоугольный, ∠AHE = 90° (EH ∈ CH)
∠EAH = 90°−∠AEH = 90°−75° = 15°
∠A = ∠EAH×2 = 15°×2 = 30°
2-й случай: биссектриса угла при основании (AD), высота из противоположного угла при основании тр-ка (BH). ∠AEH = 75°.
Так как BH — высота, тогда ΔAEH — прямоугольный, ∠AHE = 90° (EH ∈ BH)
∠EAH = 90°−∠AEH = 90°−75° = 15°
∠A = ∠EAH×2 = 15°×2 = 30°
3-й случай: биссектриса угла при вершине (CD), высота из угла при основании тр-ка (AH). ∠CEH = 75°.
CD — биссектриса, и высота и медиана, т.к. опущена из вершины на основание равнобедренного тр-ка.
Так как AH — высота, тогда ΔCEH — прямоугольный, ∠CHE = 90° (EH ∈ AH)
∠ECH = 90°−∠CEH = 90°−75° = 15°
∠A = ∠B = 90°−∠ECH = 90°−15° = 75° (т.к. ΔCBD — прямоугольный, ∠CDB = 90°).