(4/7)*((х-35/72)²+(-1225+9072)/5184)=(4/7)*((х-35/72)²+7847/5184) это выражение нулю не равно, т.к. это сумма неотрицательного и положительного чисел. тут корней нету уравнения 4х²/7-5х/9+1=0
6х^2-3x =0 вынесем общий множитель за скобки: 1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0: 3х=0 или 2х-1=0 первый корень х=0 2х-1=0 2х=1 х=1/2 - второй корень. 2)25х^2=1 x^2=1/25 x=+- 5 3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4 4)4x^2+20x+1=0 D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня 5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный 6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2 7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.
вам надо выделить полный квадрат, а потом решить уравнение.
1. х²-8х+5=(х²-2*х*4+16)-16+5=(х-4)²-11; (х-4)²-11=0; (х-4)²=11; (х-4)=±√11; х=4+√11;х=4-√11
2. х²-7х+4=(х²-2*х*3.5+12.25)-12.25+4=(х-3.5)²-8.25; (х-3.5)²-8.25=0; (х-3.5)²=8.25; (х-3.5)=±√8.25; х=3.5±√8.25; х=3.5+√8.25; х=(7+√33)/2;
х=(7-√33)/2;
3. 3*(х²-2х+1)=3*(х-1)²; 3*(х-1)²=0; 3≠0; х-1=0; х=1
4. 5х²-8х+2=5*(х²-8х/5+2/5)=5((х²-2*х*4/5+16/25)-16/25+10/25)=
5((х-/5)²-6/25); 5((х-4/5)²-6/25)=0; (х-4/5)²-6/25=0; х-4/5=±√6/5; х=(4+√6)/5;
х=(4-√6)/5;
5. 4х²/7-5х/9+1=(4/7)*(х²-35х/36+7/4)=
(4/7)*((х²-2*х*35/72+1225/5184)-1225/51847/4+7/4)=
(4/7)*((х-35/72)²-1225/5184+7/4)=
(4/7)*((х-35/72)²+(-1225+9072)/5184)=(4/7)*((х-35/72)²+7847/5184) это выражение нулю не равно, т.к. это сумма неотрицательного и положительного чисел. тут корней нету уравнения 4х²/7-5х/9+1=0
1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0:
3х=0 или 2х-1=0
первый корень х=0
2х-1=0
2х=1
х=1/2 - второй корень.
2)25х^2=1 x^2=1/25 x=+- 5
3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac
D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4
4)4x^2+20x+1=0
D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня
5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный
6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2
7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.