В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
kolyakorolev
kolyakorolev
29.01.2022 20:22 •  Алгебра

Укажите соответствующий вывод для каждого неравенства. Обоснуйте свой ответ. а) ;
b) ;
c);
d) .
1) Неравенство не имеет решений.
2) Решением неравенства является вся числовая прямая.
3) Решением неравенства является одна точка.
4) Решением неравенства является закрытый промежуток.
5) Решением неравенства является открытый промежуток.
6) Решением неравенства является объединение двух промежутков.



Укажите соответствующий вывод для каждого неравенства. Обоснуйте свой ответ. а) ;b) ;c);d) .1) Нерав

Показать ответ
Ответ:
Lena747456
Lena747456
02.10.2021 10:41

Пусть A1 — центр вписанной окружности  ∆ SBC, B1 — центр вписанной окружности  ∆ SAC, AA1 пересекается с  A, A1, B1, B лежат в одной плоскости, значит прямые AB1 и BA1 пересекаются на ребре SC. Пусть точка пересечения этих прямых — p. Так как Ap и Bp — биссектрисы углов A и B, то . Но тогда AC • BS = BC • AS, отсюда , следовательно биссектрисы углов S в  ∆ ASB и C в  ∆ ACB пересекаются на ребре AB, т.е. точки S, C и центры вписанных окружностей  ∆ ASB и  ∆ ACB лежат в одной плоскости. Отсюда следует, что отрезки, соединяющие вершины S и C с центрами вписанных окружностей противолежащих граней, пересекаются.

0,0(0 оценок)
Ответ:
grigorievatany
grigorievatany
27.02.2022 08:30
ответ:Пусть A1 — центр вписанной окружности  ∆ SBC, B1 — центр вписанной окружности  ∆ SAC, AA1 пересекается с  A, A1, B1, B лежат в одной плоскости, значит прямые AB1 и BA1 пересекаются на ребре SC. Пусть точка пересечения этих прямых — p. Так как Ap и Bp — биссектрисы углов A и B, то . Но тогда AC • BS = BC • AS, отсюда , следовательно биссектрисы углов S в  ∆ ASB и C в  ∆ ACB пересекаются на ребре AB, т.е. точки S, C и центры вписанных окружностей  ∆ ASB и  ∆ ACB лежат в одной плоскости. Отсюда следует, что отрезки, соединяющие вершины S и C с центрами вписанных окружностей противолежащих граней, пересекаются.

Объяснение:

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота