Укажите соответствующий вывод для каждого неравенства. Обоснуйте свой ответ
а) x2-3x + 5<0
b) -5x2 + 3x + 2>0
c) x2+ 6x + 9≤0
d) x2 – 4≥0
1. Неравенство не имеет решений.
2. Решением неравенства является вся числовая прямая.
3. Решением неравенства является одна точка.
4. Решением неравенства является закрытый промежуток.
5. Решением неравенства является открытый промежуток.
6. Решением неравенства является объединение двух промежутков
ответ: б - девочек больше на 8.
Пошаговое объяснение: Весь класс делится на 4, учеников в классе больше 30, но меньше 40. В этом промежутке на 4 делится только 32 или 36 чел. Количество мальчиков должно делиться на 3, а девочек - на 5. Проверяем 32 чел (1/4 от 32 = 8 отличников в классе): для этого представляем возможное кол-во м. и д. 3м+29д - не подходит, 9м+23д - нет, 12м+20д - подходит под наше условие. 1/3 от 12 = 4 мальчика на отлично, 1/5 от 20 = 4 девочки на отлично. 4+4=8 отличников всего, что походит под наше условие, т.е., в классе мальчиков 12 чел., а девочек - 20 чел. 20-12=8, т.е. девочек больше на 8 чел.
Объяснение:
1.ВЫЧИСЛИТЬ
1)√(0,25*36) = 0,5*6 = 3
2)√(6*24) = √(6*6*4) = 6*2 = 12
3)(ДРОБЬ) √75/√3 = √(25*3)/√3 = 5√3/√3 = 5
4)√(-3)В 8 СТЕПЕНИ = (-3)^4 = 81
2.СРАВНИТЬ ЧИСЛА
1)3 И √9,2
√9 < √9,2
2) 2√1,5 и 3√0,6
√(4*1,5) и √(9*0,6)
√6 > √5,4
2√1,5 > 3√0,6
3.ВЫЯСНИТЬ, ПРИ КАКИХ ЗНАЧЕНИЯХ х ИМЕЕТ СМЫСЛ ВЫРАЖЕНИЕ √(3х+12)
3x + 12 >= 0
3(x + 4) >= 0
x + 4 >= 0
x >= -4
4.УПРОСТИТЬ ВЫРАЖЕНИЯ
1) (1+√5)² = 1 + 2√5 + 5 = 6 + 2√5
2) (√5-√3)(√5+√3) = 5 - 3 = 2
Использовали формулу разности квадратов.
3) (3√14+√7):√7 - 2√2 = 3√2*√7/√7 + √7/√7 - 2√2 = 3√2 + 1 - 2√2 = 1 + √2
5.ВЫНЕСТИ МНОЖИТЕЛЬ ИЗ-ПОД ЗНАКА КОРНЯ
√(48а²b в 6 степени) при а>0, b<0
√(48a^2*b^6) = √(16*3*a^2*(-b)^6) = 4a*(-b)^3*√3 = -4ab^3*√3
Так как b < 0, то из-под корня выносится (-b)^3 > 0