Рассмотрим функцию y = (23 - x) * e23 – x. Отметим, что данная функция определена и дифференцируема для всех х ∈ (-∞; +∞). По требованию задания, найдём точки минимума данной функции, если таковые существуют. Воспользуемся приёмами дифференциального и интегрального исчисления. Как известно, необходимым условием экстремума функции одной переменной в точке x* является равенство нулю первой производной функции, то есть, в точке x* первая производная функции должна обращаться в нуль.
Найдём первую производную данной функции: f Ꞌ(x) = ((23 - x) * e23 – x)Ꞌ = (23 - x)Ꞌ * e23 – x + (23 - x) * (e23 – x)Ꞌ = -e23 – x - (23 - x) * e23 – x = (x – 24) * e23 – x. Приравнивая производную к нулю, получим уравнение (x – 24) * e23 – x = 0. Для того, чтобы произведение двух сомножителей равнялось нулю, необходимым и достаточным условием является равенство нулю хотя бы одного из сомножителей. Поскольку для любого х ∈ (-∞; +∞) справедливо e23 – x > 0, то получим х – 24 = 0, откуда х = 24.
Для выяснения поведения функции в найденной точке, рассмотрим поведение производной в следующих двух множествах: (-∞; 24) и (24; +∞). Очевидно, что, при х ∈ (-∞; 24), например, при х = 23, производная f Ꞌ(x) < 0; при х ∈(24; +∞), например, при х = 25, производная f Ꞌ(x) > 0.
Поскольку при переходе через точку х = 24 производная f Ꞌ(x) меняет свой знак с минуса на плюс, то точка x = 24 является точкой минимума функции. Вычислим значение данной функции при x = 24. Имеем: f(24) = (23 - 24) * e23 – 24 = -1 / е.
Значит, точкой минимума данной функции является х = 24.
ответ: Точкой минимума данной функции является х = 24.
Объяснение:
Рассмотрим функцию y = (23 - x) * e23 – x. Отметим, что данная функция определена и дифференцируема для всех х ∈ (-∞; +∞). По требованию задания, найдём точки минимума данной функции, если таковые существуют. Воспользуемся приёмами дифференциального и интегрального исчисления. Как известно, необходимым условием экстремума функции одной переменной в точке x* является равенство нулю первой производной функции, то есть, в точке x* первая производная функции должна обращаться в нуль.
Найдём первую производную данной функции: f Ꞌ(x) = ((23 - x) * e23 – x)Ꞌ = (23 - x)Ꞌ * e23 – x + (23 - x) * (e23 – x)Ꞌ = -e23 – x - (23 - x) * e23 – x = (x – 24) * e23 – x. Приравнивая производную к нулю, получим уравнение (x – 24) * e23 – x = 0. Для того, чтобы произведение двух сомножителей равнялось нулю, необходимым и достаточным условием является равенство нулю хотя бы одного из сомножителей. Поскольку для любого х ∈ (-∞; +∞) справедливо e23 – x > 0, то получим х – 24 = 0, откуда х = 24.
Для выяснения поведения функции в найденной точке, рассмотрим поведение производной в следующих двух множествах: (-∞; 24) и (24; +∞). Очевидно, что, при х ∈ (-∞; 24), например, при х = 23, производная f Ꞌ(x) < 0; при х ∈(24; +∞), например, при х = 25, производная f Ꞌ(x) > 0.
Поскольку при переходе через точку х = 24 производная f Ꞌ(x) меняет свой знак с минуса на плюс, то точка x = 24 является точкой минимума функции. Вычислим значение данной функции при x = 24. Имеем: f(24) = (23 - 24) * e23 – 24 = -1 / е.
Значит, точкой минимума данной функции является х = 24.
ответ: Точкой минимума данной функции является х = 24.
2 (км/час) - скорость течения реки
Объяснение:
х - скорость течения реки
9+х - скорость лодки по течению
9-х - скорость лодки против течения
77/(9+х) - время лодки по течению
77/(9-х) - время лодки против течения
По условию задачи на путь по течению затрачено на 4 часа меньше, уравнение:
77/(9-х) - 77/(9+х) = 4
Избавляемся от дробного выражения, общий знаменатель (9-х)(9+х) или 81-х², надписываем дополнительные множители над числителями:
77(9+х) - 77(9-х)=4(81-х²)
693+77х-693+77х=324-4х²
4х²+154х-324=0/4 разделим уравнение на 4 для удобства вычислений:
х²+38,5х-81=0
х₁,₂=(-38,5±√1482,25+324)/2
х₁,₂=(-38,5±√1806,25)/2
х₁,₂=(-38,5±42,5)/2
х₁= -81/2= -40,5 отбрасываем, как отрицательный
х₂= 4/2=2 (км/час) - скорость течения реки
Проверка:
77: 11=7 (часов) время по течению
77 : 7=11 (часов) время против течения
11-7=4 (часа) - разница, всё верно.