Пусть скорость течения реки (х) км/час собственная скорость лодки (у) км/час ---это и скорость в стоячей воде))) тогда скорость ПО течению будет (у+х) км/час скорость ПРОТИВ течения будет (у-х) км/час t = S / v время = путь / скорость на путь 54 км ПО течению реки лодка потратит (54 / (у+х)) часов на путь 48 км БЕЗ течения лодка потратит (48 / у) часов и всего 6 часов))) (54 / (у+х)) + (48/у) = 6 (64/у) - (36/(у+х)) = 2 система 48х + 102у = 6*у*(х+у) 64х + 28у = 2*у*(х+у)
8х + 17у = у*(х+у) 32х + 14у = у*(х+у)
8х + 17у = 32х + 14у 24х = 3у у = 8х
8х + 17*8х = 8х*(х+8х) 18х = 9х² 2х = х² х² - 2х = 0 х*(х - 2) = 0 ---> х = 0 (этот корень не имеет смысла))) х = 2 (км/час) ---скорость течения реки у = 8х = 16 (км/час) собственная скорость лодки ПРОВЕРКА: (54 / 18) + (48 / 16) = 3+3 = 8 часов))) 64 / 16 = 4 часа в стоячей воде двигалась лодка 36 / 18 = 2 часа по течению реки ---это на 2 часа больше)))
Найдем точку пересечения функции x²-2x+3 с осью х x²-2x+3=0 D=2²-4*3=4-12=-8 Корней нет. Следовательно, с осью х не пересекается Ищем точку пересечения с осью у х=0 y=0²+2*0+3=3 (0;3) - искомая точка Находим производную y'=2x-2 y'(x₀)=2*0-2=-2 Уравнение касательной общем виде y = f(x₀) + f '(x₀)(x – x₀)) y=3-2(x-0) y=3-2x ответ: y=-2x+3 (наверно, это ответ С, там опечатка)
у=1/2x^2 - 2x + 6/7 y'=x-2 x-2=0 x=2 ответ: 2 (D)
f (x) = x+1/x-1 проведенной в точке М (2;3). f (x) = x+x⁻¹-1 f '(x) = 1-x⁻² x₀=2 f '(2) = 1-2⁻²=1-1/4=3/4=0.75 f (2)=2+1/2-1=3/2=1.5 Уравнение касательной общем виде y = f(x₀) + f '(x₀)(x – x₀)) y=1.5+0.75(x-2) y=1.5+0.75x-1.5 y=0.75x ответ: y=0.75x (вообще ничего похожего нет!) Это потому что т.М не принадлежит данной кривой - ее координаты не удовлетворяют данному уравнению
Наверно, я не так условие понял. Ну-ка, попробуем по-другому f (x) = (x+1)/(x-1) проведенной в точке М (2;3). x₀=2 f (x₀) = (2+1)/(2-1)=3 (Да, теперь подходит) f '(x) = [(x+1)'(x-1)-(x+1)(x-1)']/(x-1)²=(x-1-(x+1))/(x-1)²=-2/(x-1)² f '(2)=-2/(2-1)²=-2 Уравнение касательной общем виде y = f(x₀) + f '(x₀)(x – x₀)) y=3-2(x-2) y=3-2x+4 y=7-2x ответ: y=7-2x (все-равно, нет такого ответа)
собственная скорость лодки (у) км/час ---это и скорость в стоячей воде)))
тогда скорость ПО течению будет (у+х) км/час
скорость ПРОТИВ течения будет (у-х) км/час
t = S / v время = путь / скорость
на путь 54 км ПО течению реки лодка потратит (54 / (у+х)) часов
на путь 48 км БЕЗ течения лодка потратит (48 / у) часов и всего 6 часов)))
(54 / (у+х)) + (48/у) = 6
(64/у) - (36/(у+х)) = 2
система
48х + 102у = 6*у*(х+у)
64х + 28у = 2*у*(х+у)
8х + 17у = у*(х+у)
32х + 14у = у*(х+у)
8х + 17у = 32х + 14у
24х = 3у
у = 8х
8х + 17*8х = 8х*(х+8х)
18х = 9х²
2х = х²
х² - 2х = 0
х*(х - 2) = 0 ---> х = 0 (этот корень не имеет смысла)))
х = 2 (км/час) ---скорость течения реки
у = 8х = 16 (км/час) собственная скорость лодки
ПРОВЕРКА:
(54 / 18) + (48 / 16) = 3+3 = 8 часов)))
64 / 16 = 4 часа в стоячей воде двигалась лодка
36 / 18 = 2 часа по течению реки ---это на 2 часа больше)))
x²-2x+3=0
D=2²-4*3=4-12=-8
Корней нет. Следовательно, с осью х не пересекается
Ищем точку пересечения с осью у
х=0 y=0²+2*0+3=3
(0;3) - искомая точка
Находим производную
y'=2x-2
y'(x₀)=2*0-2=-2
Уравнение касательной общем виде
y = f(x₀) + f '(x₀)(x – x₀))
y=3-2(x-0)
y=3-2x
ответ: y=-2x+3 (наверно, это ответ С, там опечатка)
у=1/2x^2 - 2x + 6/7
y'=x-2
x-2=0
x=2
ответ: 2 (D)
f (x) = x+1/x-1 проведенной в точке М (2;3).
f (x) = x+x⁻¹-1
f '(x) = 1-x⁻²
x₀=2
f '(2) = 1-2⁻²=1-1/4=3/4=0.75
f (2)=2+1/2-1=3/2=1.5
Уравнение касательной общем виде
y = f(x₀) + f '(x₀)(x – x₀))
y=1.5+0.75(x-2)
y=1.5+0.75x-1.5
y=0.75x
ответ: y=0.75x (вообще ничего похожего нет!)
Это потому что т.М не принадлежит данной кривой - ее координаты не удовлетворяют данному уравнению
Наверно, я не так условие понял. Ну-ка, попробуем по-другому
f (x) = (x+1)/(x-1) проведенной в точке М (2;3).
x₀=2
f (x₀) = (2+1)/(2-1)=3 (Да, теперь подходит)
f '(x) = [(x+1)'(x-1)-(x+1)(x-1)']/(x-1)²=(x-1-(x+1))/(x-1)²=-2/(x-1)²
f '(2)=-2/(2-1)²=-2
Уравнение касательной общем виде
y = f(x₀) + f '(x₀)(x – x₀))
y=3-2(x-2)
y=3-2x+4
y=7-2x
ответ: y=7-2x (все-равно, нет такого ответа)