Геометрическая прогрессия Последовательность чисел {an} называется геометрической прогрессией, если отношение последующего члена к предыдущему равно одному и тому же постоянному числу q, называемому знаменателем геометрической прогрессии. Таким образом, для всех членов геометрической прогрессии. Предполагается, что q ≠ 0 и q ≠ 1.
Любой член геометрической прогрессии можно вычислить по формуле:
Сумма первых n членов геометрической прогрессии определяется выражением
Говорят, что бесконечная геометрическая прогрессия сходится, если предел существует и конечен. В противном случае прогрессия расходится.
Пусть представляет собой бесконечный ряд геометрической прогрессии. Данный ряд сходится к, если знаменатель |q| < 1, и расходится, если знаменатель |q| > 1.
Пример 1 Найти сумму первых 8 членов геометрической прогрессии 3, 6, 12, ..
Решение. Здесь a1 = 3 и q = 2. Для n = 8 получаем
Пример 2 Найти сумму ряда .
Решение. Данный ряд является бесконечной геометрической прогрессией со знаменателем q = − 0,37. Следовательно, прогрессия сходится и ее сумма равна
Пример 3 Найти сумму ряда
Решение. Здесь мы имеем дело с конечной геометрической прогрессией, знаменатель которой равен . Поскольку сумма геометрической прогрессии выражается формулой
то получаем следующий результат:
Пример 4 Выразить бесконечную периодическую дробь 0,131313... рациональным числом.
Решение. Запишем периодическую дробь в следующем виде:
Используя формулу суммы бесконечно убывающей геометрической прогрессии со знаменателем, получаем
Пример 5 Показать, что
при условии x > 1.
Решение. Очевидно, что если x > 1, то . Тогда левая часть в заданном выражении представляет собой сумму бесконечно убывающей геометрической прогрессии. Используя формулу, левую часть можно записать в виде
что доказывает исходное соотношение.
Пример 6 Решить уравнение
Решение. Запишем левую часть уравнения в виде суммы бесконечно убывающей геометрической прогрессии:
Тогда уравнение принимает вид
Находим корни квадратного уравнения:
Поскольку |x| < 1, то решением будет .
Пример 7 Известно, что второй член бесконечно убывающей геометрической прогрессии (|q| < 1) равен 21, а сумма равна 112. Найти первый член и знаменатель прогрессии.
16^5 -8^6=(2×8)^5 -8^6=(2×2^3)^5 -(2^3)^6=(2^4)^5 -(2^3)^6=2^20 -2^18=2^18 ×(2^2 -1)=2^18 ×(4-1)=3×2^18, где одно из производных кратно трем (3:3=1). Следовательно, ответ также будет кратным 3.
Последовательность чисел {an} называется геометрической прогрессией, если отношение последующего члена к предыдущему равно одному и тому же постоянному числу q, называемому знаменателем геометрической прогрессии. Таким образом, для всех членов геометрической прогрессии. Предполагается, что q ≠ 0 и q ≠ 1.
Любой член геометрической прогрессии можно вычислить по формуле:
Сумма первых n членов геометрической прогрессии определяется выражением
Говорят, что бесконечная геометрическая прогрессия сходится, если предел существует и конечен.
В противном случае прогрессия расходится.
Пусть представляет собой бесконечный ряд геометрической прогрессии. Данный ряд сходится к, если знаменатель |q| < 1, и расходится, если знаменатель |q| > 1.
Пример 1
Найти сумму первых 8 членов геометрической прогрессии 3, 6, 12, ..
Решение.
Здесь a1 = 3 и q = 2. Для n = 8 получаем
Пример 2
Найти сумму ряда .
Решение.
Данный ряд является бесконечной геометрической прогрессией со знаменателем q = − 0,37. Следовательно, прогрессия сходится и ее сумма равна
Пример 3
Найти сумму ряда
Решение.
Здесь мы имеем дело с конечной геометрической прогрессией, знаменатель которой равен . Поскольку сумма геометрической прогрессии выражается формулой
то получаем следующий результат:
Пример 4
Выразить бесконечную периодическую дробь 0,131313... рациональным числом.
Решение.
Запишем периодическую дробь в следующем виде:
Используя формулу суммы бесконечно убывающей геометрической прогрессии со знаменателем, получаем
Пример 5
Показать, что
при условии x > 1.
Решение.
Очевидно, что если x > 1, то . Тогда левая часть в заданном выражении представляет собой сумму бесконечно убывающей геометрической прогрессии. Используя формулу, левую часть можно записать в виде
что доказывает исходное соотношение.
Пример 6
Решить уравнение
Решение.
Запишем левую часть уравнения в виде суммы бесконечно убывающей геометрической прогрессии:
Тогда уравнение принимает вид
Находим корни квадратного уравнения:
Поскольку |x| < 1, то решением будет .
Пример 7
Известно, что второй член бесконечно убывающей геометрической прогрессии (|q| < 1) равен 21, а сумма равна 112. Найти первый член и знаменатель прогрессии.
Решение.
Используем формулу бесконечно убывающей геометрической прогрессии
Объяснение:
1).
10a^5 b^3 -18a^3 b^7=2a^3 b^3 •(5а^2 -9b^4)
(х+5)(5а+1)-(х+5)(2а-8)=(х+5)(5а+1-2а+8)=(х+5)(3а+9)=3(х+5)(а+3)
3а-3b+ax-bx=3(a-b)+x(a-b)=(3+x)(a-b)
x^2 -2xy+x-xz+2yz-z=x(x-2y+1)-z(x-2y+1)=(x-z)(x-2y+1)
2).
12х-4х^2=0
4х(3-х)=0
4х=0
х1=0/4=0
3-х=0
х2=0+3=3
(х-9)(4х+3)-(х-9)(3х-1)=(х-9)(4х+3-3х+1)=(х-9)(х+4)
3).
16^5 -8^6=(2×8)^5 -8^6=(2×2^3)^5 -(2^3)^6=(2^4)^5 -(2^3)^6=2^20 -2^18=2^18 ×(2^2 -1)=2^18 ×(4-1)=3×2^18, где одно из производных кратно трем (3:3=1). Следовательно, ответ также будет кратным 3.