рассмотрим на примерах несколько решения систем подстановки.Решим систему уравнений подстановки заключается в следующем:1) выражаем одно неизвестное через другое, воспользовавшись одним из заданных уравнений. Обычно выбирают то уравнение, где это делается проще. В данном случае нам все равно, какое из заданных уравнений использовать для нашей цели. Возьмем, например, первое уравнение системы, и выразим x через y: .2) подставим во второе уравнение системы вместо x полученное равенство: .Получили линейное уравнение относительно переменной y. Решим это уравнение, помножим это равенство на 2, чтобы избавиться от дроби в левой части равенства:Подставим найденное значение в равенство, выражающее x, получим: .Таким образом, нами найдена пара значений , которая является решением заданной системы. Осталось сделать проверку.Проверка уравнивания коэффициентов при неизвестных состоит в том, что исходную систему приводят к такой эквивалентной системе, где коэффициенты при x или y были одинаковы. Покажем, как это делается, на данном примере.Решим систему: 1) Для приравнивания коэффициентов, например при y надо найти НОК(3; 5)=15, где 3 и 5 —коэффициенты при y в уравнениях системы. Затем разделить 15 на 3 — коэффициент при y в первом уравнении, получим 5. Делим 15 на 5 — коэффициент при — во втором уравнении, получаем 3. Следовательно, первое уравнение системы умножаем на 5. а второе на 3:2) Так как коэффициенты при y имеют противоположные знаки, складываем почленно уравнения системы:3) Для нахождения соответствующего значения y подставим значение x в любое исходное уравнение системы (обычно подставляют в то уравнение системы, где отыскание значения y проще). В исходной системе уравнения одинаковы по сложности, поэтому подставим значение x = 4 во второе уравнение, чтобы не делать лишней операции деления на -1: Таким образом, найдена пара значений которая является решением заданной системы.Иногда задаются системы уравнений, где нет необходимости в уравнивании коэффициентов при неизвестных. Почленное сложение или вычитание уравнений системы приводит к простейшему решению.Например, решить систему уравнений: Складывая почленно уравнения заданной системы, получим:.Подставив вместо x значение 5 во второе уравнение исходной системы, находим соответствующее значение y:
Решение: по теореме пифагора сумма квадратов катетов равна квадрату гипотенузы пусть х - наш искомый катет, то второй катет будет х-7, а гипотенуза х+1 составим уравнение: х²+(х-7)² = (х+1)² х²+х²-14х+49 = х²+2х+1 2х²-14х+49 = х²+2х+1 х²-16х+48 = 0
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7