Разберем последовательно как можно просто и без ошибок построить график любой функции.
Для этого первым делом рассмотрим функцию, график которой нужно построить.
Данная функция представлена в виде дроби целого известного числа и неизвестного, причем неизвестное стоит в знаменателе дроби. Вспоминаем математику начальных классов, когда учили, что делить нельзя только на ноль. Из этого делаем вывод, что неизвестное число х для заданной функции может быть каким угодно, кроме нуля. Теперь можно записать область значений переменной х:
Проверим, является ли функция четной. Для этого подставим —х в ее уравнение вместо х и сделаем вывод:
Получаем нечетную функцию. Для нас такая информация полезна тем, что график нечетной функции симметричен началу координат, то есть точке (0; 0).
Найдем точки, которые принадлежат графику, чтобы провести через них кривую. Выберем точки произвольно и подставим вместо х:
№ 1.
Если перед скобками стоит знак минус, то знаки в скобках меняются на противоположные.
1) 5(a - b + c) = 5a - 5b + 5c
5(а - b + c) = 5a - 5b + 5c - тождественно равные выражения;
2) -2(х - 4) = -2х + 8
-2(х - 4) ≠ -2х - 8 - не являются тождественно равными выражениями;
3) (5а - 4) - (2а - 7) = 5а - 4 - 2а + 7 = (5а - 2а) + (7 - 4) = 3а + 3
(5а - 4) - (2а - 7) ≠ 3а - 11 - не являются тождественно равными выражениями.
№ 2.
-12а + (7 - 2а) = -12а + 7 - 2а = (-12а - 2а) + 7 = -14а + 7.
№ 3.
Пусть х - первоначальная цена товара (100%), тогда
х + 0,2х = 1,2х - цена товара после увеличения на 20%
1,2х - 0,2 · 1,2х = 1,2х - 0,24х = 0,96х - цена после снижения на 20%
х - 0,96х = 0,04х - на столь снизилась цена по сравнению с первоначальной
0,04 · 100 = 4% - на столько процентов снизилась начальная цена
ответ: снизилась на 4%.
Объяснение:
Решение.
Разберем последовательно как можно просто и без ошибок построить график любой функции.
Для этого первым делом рассмотрим функцию, график которой нужно построить.
Данная функция представлена в виде дроби целого известного числа и неизвестного, причем неизвестное стоит в знаменателе дроби. Вспоминаем математику начальных классов, когда учили, что делить нельзя только на ноль. Из этого делаем вывод, что неизвестное число х для заданной функции может быть каким угодно, кроме нуля. Теперь можно записать область значений переменной х:
Проверим, является ли функция четной. Для этого подставим —х в ее уравнение вместо х и сделаем вывод:
Получаем нечетную функцию. Для нас такая информация полезна тем, что график нечетной функции симметричен началу координат, то есть точке (0; 0).
Найдем точки, которые принадлежат графику, чтобы провести через них кривую. Выберем точки произвольно и подставим вместо х: