В числителе 3-ку мы может отбросить, т.к. на предел она не повлияет, потому что с бесконечностью тройка бесконечна мала. Вообще в пределах с бесконечностью можно отбрасывать просто числа, не зависящие от х. В знаменателе 3-ку тоже можно убрать, но не обязательно. И ещё . Думаю это понятно.
Тут ещё явно не указано к +бесконечности стремится х, или к -бесконечности. Если просто бесконечность, обычно так пишут когда х стремится к +бесконечности. Но если вдруг к -бесконечности, то при раскрытии модуля получаем минус и предел в итоге получиться -2.
Когда мы считаем производную по какой-то переменной, то мы считаем что все остальные переменные независимые. К примеру:
Грубо говоря когда мы ищем производную по x, мы считаем что у это какое-то число. Надеюсь это понятно.
Теперь частные производные второго порядка.
Рассмотрим производную по х. Во второй раз мы может взять её опять же по 3 переменным.
Теперь рассматриваем производную по у. Её 2-уй производную берём снова по 3-ём переменным.
Заметим что:
Такие равенства выполняются и для других смешанных производный, то есть:
И наконец рассмотрим производную по z. Опять же 3 варианта. Но теперь мы воспользуемся равенством рассмотренным выше.
Ну вот и всё. Будут вопросы - спрашивайте.
В знаменателе 3-ку тоже можно убрать, но не обязательно. И ещё . Думаю это понятно.
Тут ещё явно не указано к +бесконечности стремится х, или к -бесконечности. Если просто бесконечность, обычно так пишут когда х стремится к +бесконечности.
Но если вдруг к -бесконечности, то при раскрытии модуля получаем минус и предел в итоге получиться -2.