Умножим и первое и второе неравенство на 2, чтобы избавиться от дроби:
2+3x>=2
2+3x<=3
3х>=2-2
3x<=3-2
3x>=0
3x<=1
x>=0 решение неравенства х∈[0, ∞)
x<=1/3 решение неравенства х∈(-∞, 1/3]
Отметим на числовой оси решение первого неравенства и решение второго, чтобы найти пересечение решений, то есть, такое решение, которое подходит и первому, и второму неравенству.
Решение системы неравенств х∈ [0, 1/3]
Неравенства нестрогие, скобки квадратные.
9) -(2-3х)+4(6+х)>=1
-2+3x+24+4x>=1
7x+22>=1
7x>=1-22
7x>= -21
x>= -3
х∈[-3, ∞)
Неравенства нестрогие, скобка квадратная, у знаков + - бесконечности всегда круглая.
(x-1)(x+5)>0 Находим точки, в которых неравенство равно нулю: x-1=0 x=1 x+5=0 x=-5 Наносим на прямую (-∞;+∞) эти точки: -∞-51+∞ Получаем три диапазона: (-∞;-5) (-5;1) (1;+∞) Для того, чтобы определить знак диапазона достаточно подставить хотя бы одно число из этого диапазона: (-∞;-5) Например, подставим число -7: (-7-1)(-7+5)=-8*(-2)=16>0 ⇒ + (-5;1) Подставим число этого диапазона 0: (0-1)(0+5)=-1*5=-5<0 ⇒ - (1;+∞) Подставим 2: (2-1)(2+5)=1*7=7>0 ⇒ + -∞+-5-1++∞ ⇒ x∈(-∞;-5)U(1;+∞).
8)х∈ [0, 1/3]
9)х∈[-3, ∞)
Объяснение:
8)1<=(2+3x)/2<=1,5
Решаем как систему:
(2+3x)/2>=1
(2+3x)/2<=1,5
Умножим и первое и второе неравенство на 2, чтобы избавиться от дроби:
2+3x>=2
2+3x<=3
3х>=2-2
3x<=3-2
3x>=0
3x<=1
x>=0 решение неравенства х∈[0, ∞)
x<=1/3 решение неравенства х∈(-∞, 1/3]
Отметим на числовой оси решение первого неравенства и решение второго, чтобы найти пересечение решений, то есть, такое решение, которое подходит и первому, и второму неравенству.
Решение системы неравенств х∈ [0, 1/3]
Неравенства нестрогие, скобки квадратные.
9) -(2-3х)+4(6+х)>=1
-2+3x+24+4x>=1
7x+22>=1
7x>=1-22
7x>= -21
x>= -3
х∈[-3, ∞)
Неравенства нестрогие, скобка квадратная, у знаков + - бесконечности всегда круглая.
Находим точки, в которых неравенство равно нулю:
x-1=0 x=1
x+5=0 x=-5
Наносим на прямую (-∞;+∞) эти точки:
-∞-51+∞
Получаем три диапазона: (-∞;-5) (-5;1) (1;+∞)
Для того, чтобы определить знак диапазона достаточно подставить хотя бы одно число из этого диапазона:
(-∞;-5) Например, подставим число -7: (-7-1)(-7+5)=-8*(-2)=16>0 ⇒ +
(-5;1) Подставим число этого диапазона 0: (0-1)(0+5)=-1*5=-5<0 ⇒ -
(1;+∞) Подставим 2: (2-1)(2+5)=1*7=7>0 ⇒ +
-∞+-5-1++∞ ⇒
x∈(-∞;-5)U(1;+∞).