В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
jkdsxkidhkofd
jkdsxkidhkofd
12.03.2021 03:20 •  Алгебра

Умоляю у меня есть токо 40 минут ​ умоляю


Умоляю у меня есть токо 40 минут ​ умоляю

Показать ответ
Ответ:
bbezza66
bbezza66
24.07.2022 14:52

Для розв'язання системи рівнянь методом підстановки, спочатку виразимо одну змінну через іншу в одному з рівнянь, а потім підставимо це значення в друге рівняння.

1. Виразимо х через у з першого рівняння:

х = 3 + 2у

2. Підставимо це значення х у друге рівняння:

5(3 + 2у) + у = 4

3. Розкриємо дужки і спростимо рівняння:

15 + 10у + у = 4

11у + 15 = 4

11у = 4 - 15

11у = -11

у = -11 / 11

у = -1

4. Тепер, коли ми знайшли значення у, підставимо його у перше рівняння для знаходження х:

х = 3 + 2(-1)

х = 3 - 2

х = 1

Отже, розв'язком системи рівнянь є х = 1 і у = -1.

0,0(0 оценок)
Ответ:
sodel28
sodel28
24.07.2022 14:52

наибольшее значение функции равно 4\dfrac{1}{7} ,  а наименьшее значение функции равно   -1\dfrac{1}{3}

Объяснение:

Найти наибольшее и наименьшее значение функции

y=\dfrac{x^{2} +4}{2x-3}     на промежутке [ 0; 5]

Так как делить на нуль нельзя, то 2х -3 ≠0, то есть х ≠ 1,5.

Тогда область определение функции: D(y) = ( -∞ ; 1,5 ) ∪(1,5; + ∞)

Найдем производную функции

y'=\left(\dfrac{x^{2} +4}{2x-3}\right)'= \dfrac{(x^{2} +4)'(2x-3) - (x^{2} +4)(2x-3)'}{(2x-3)^{2} } ==\dfrac{2x\cdot(2x-3) -2\cdot( x^{2} +4)}{(2x-3)^{2} } =\dfrac{4x^{2} -6x-2x^{2} -8}{(2x-3)^{2} } =\dfrac{2x^{2} -6x -8}{(2x-3)^{2} }

Найдем критические точки, решив уравнение: y' = 0.

Дробь равна нулю, если числитель равен нулю

2x^{2} -6x -8=0|:2;\\x^{2} -3x-4=0;\\D =(-3)^{2} -4\cdot1\cdot (-4)= 9+16=25 =5^{2} ;x{_1}= \dfrac{3-5}{2} =-\dfrac{2}{2} =-1;x{_2}= \dfrac{3+5}{2} =\dfrac{8}{2} =4.

Заданному промежутку [ 0; 5]  принадлежит х =4.

Найдем значение функции на концах промежутка и в точке х =4 .

y(0)=\dfrac{0^{2} +4}{2\cdot 0-3}=\dfrac{4}{-3} =-1\dfrac{1}{3} ;y(4)=\dfrac{4^{2} +4}{2\cdot4-3}=\dfrac{16+4}{8-3} =\dfrac{20}{5} =4;y(5)=\dfrac{5^{2} +4}{2\cdot5 -3}=\dfrac{25+4}{10-3} =\dfrac{29}{7} =4\dfrac{1}{7} .

Сравним найденные значения и получим, что наибольшее значение функции равно 4\dfrac{1}{7} ,  а наименьшее значение функции равно   -1\dfrac{1}{3}

#SPJ1

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота