Числа, которые при делении на 12 дают остаток 5, имеют вид: 12k + 5, где k ∈ N. Для трёхзначных чисел выполняется двойное неравенство: 100 ≤ 12k + 5 ≤ 999, или 95 ≤ 12k ≤ 994, или Т.о. при 8 ≤ k ≤ 82, или 96 ≤ 12k ≤ 984, или 101 ≤ 12k + 5 ≤ 989, мы получаем все трёхзначные числа, которые при делении на 12 дают остаток 5. Всего таких чисел 82 - 8 + 1 = 75. Итак, мы знаем первое и последнее число арифметической прогрессии с шагом, равным 12, и количество таких членов. Поэтому спокойно можем использовать формулу суммы арифметической прогрессии:
12k + 5, где k ∈ N. Для трёхзначных чисел выполняется двойное неравенство:
100 ≤ 12k + 5 ≤ 999, или 95 ≤ 12k ≤ 994, или
Т.о. при 8 ≤ k ≤ 82, или 96 ≤ 12k ≤ 984, или 101 ≤ 12k + 5 ≤ 989, мы получаем все трёхзначные числа, которые при делении на 12 дают остаток 5. Всего таких чисел 82 - 8 + 1 = 75.
Итак, мы знаем первое и последнее число арифметической прогрессии с шагом, равным 12, и количество таких членов. Поэтому спокойно можем использовать формулу суммы арифметической прогрессии:
Подставляем свои значения и считаем:
Пусть х-это скорость течения реки.Тогда скорость по течению реки будет (18+х),а против течения реки будет (18-х).
Составим уравнение 50 км/(18+х) + 8км/(18-х) = 3 часа
50·(18-х) + 8·(18+х) - 3·(18+х)·(18-х) =0
(только х≠18 , чтобы знаменатель не был равен нулю)
900 -50х + 144 + 8х - ( 54+3х)·(18-х)=0
1044 -42х - (972-54х+54х-3х²)=0
1044 - 42х -972 +54х -54х +3х²=0
3х²-42х+72=0
разделим всё на 3,каждый член, для облегчения решения
х²- 14х+ 24 =0
Д=196-4·1·24=100
х= 12 и х=2 Скорость реки не может быть почти равной скорости теплохода, поэтому х=12 мы не принимаем за ответ.
ответ: х=2км/ч