1. Сложим системы:
2x = 6
x = 3
Из первого уравнение y=2-x = 3-2 = -1
x=3 y=-1
2. Сложим системы
9x = 18
x = 2
Из второго 4y=8-3x=8-6=2 y=2/4=0,5
x=2 y=0,5 (2; 0,5)
3. Вычтем из первого уравнения второе
4x - 4x - 7y + 5y = 30 - 90
-2y = -60
y= 30
Из первого уравнения 4x = 30 + 7y = 30 + 210 = 240 x=60
x=60 y=30 (60;30)
4. Вычтем второе из первого
3y - 5y = 66 - 22
-2y = 44
y = -22
Из первого 12x = 66 - 3y = 66 + 66 = 132 x=11
x=11 y=-22 x+y=11-22= -11
5. Сложим уравнения
y-4y = 12
-3y = 12 y=-4
Из второго 2x=8+4y=8-16=-8 x=-4
x= -4 y=-4 x/y = 1
1. Сложим системы:
2x = 6
x = 3
Из первого уравнение y=2-x = 3-2 = -1
x=3 y=-1
2. Сложим системы
9x = 18
x = 2
Из второго 4y=8-3x=8-6=2 y=2/4=0,5
x=2 y=0,5 (2; 0,5)
3. Вычтем из первого уравнения второе
4x - 4x - 7y + 5y = 30 - 90
-2y = -60
y= 30
Из первого уравнения 4x = 30 + 7y = 30 + 210 = 240 x=60
x=60 y=30 (60;30)
4. Вычтем второе из первого
3y - 5y = 66 - 22
-2y = 44
y = -22
Из первого 12x = 66 - 3y = 66 + 66 = 132 x=11
x=11 y=-22 x+y=11-22= -11
5. Сложим уравнения
y-4y = 12
-3y = 12 y=-4
Из второго 2x=8+4y=8-16=-8 x=-4
x= -4 y=-4 x/y = 1
0 < x^2 + x - 2 < x + 3
{ x^2 + x - 2 > 0, x^2 + x - 2 < x + 3 }
{ (x + 2)(x - 1) > 0, x^2 < 5 }
Решение первого неравенства: (-∞, -2) ∪ (1, +∞)
Решение второго неравенства: (-√5, √5)
Решение системы неравенств - пересечение этих множеств.
ответ. (-√5, -2) ∪ (1, √5).
2. 0.5^log(2, x^2 - 1) > 1
0.5^log(2, x^2 - 1) > 0.5^0
log(2, x^2 - 1) < 0
0 < x^2 - 1 < 2^0
0 < x^2 - 1 < 1
1 < x^2 < 2
x ∈ (-√2, 1) ∪ (1, √2)
3. 4log(6, 6√4) = 4log(6, 6) + 4log(6, √4) = 4 + 4log(6, 2)