В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
smolikarina
smolikarina
25.02.2021 19:44 •  Алгебра

Упрастите выражение 1) а²+16___а-4+8а___4а-а 2)х²+4у²___х-2у+4ху___2у-х у вас есть час​

Показать ответ
Ответ:
Strong996
Strong996
21.11.2021 18:34

x=-7; x=1

Объяснение:

(x+3)^2+16=2|x+3|(|x-6|-|x-2|)  

Выделим в левой части полный квадрат. Для этого прибавим к обеим частям уравнения выражение (|x-6|-|x-2|)^2 и перенесем слагаемое 2\cdot |x+3|\cdot (|x-6|-|x-2|) в левую часть:

|x+3|^2-2\cdot |x+3|\cdot (|x-6|-|x-2|)+(|x-6|-|x-2|)^2=(|x-6|-|x-2|)^2-16\\ (|x+3|-(|x-6|-|x-2|))^2=(|x-6|-|x-2|)^2-16\\ (|x+3|-(|x-6|-|x-2|))^2=x^2-12x+36-2(|x-6|\cdot |x-2|)+x^2-4x+4-16\\ (|x+3|-(|x-6|-|x-2|))^2=(2x^2-16x+24)-|2x^2-16x+24|\;\;\:\;\:\;\:\;(1)

1) 2x^2-16x+24< 0\Leftrightarrow 2< x< 6

Тогда (1) примет вид

(|x+3|-(|x-6|-|x-2|))^2=2\cdot (2x^2-16x+24)

Левая часть неотрицательна. Правая часть, учитывая рассматриваемый интервал, строго отрицательна. Значит, корней на данном интервале нет.

2) 2x^2-16x+24\geq 0

Возможны 2 случая:

2.1) x\leq 2

Тогда (1) примет вид

(|x+3|-(6-x-2+x))^2=0\\ (|x+3|-4)^2=0\\ |x+3|=4\\ x=1\;\:\;\:\;\:\;\:\;\:\;\:\;\:\;\:x=-7

Оба корня принадлежат рассматриваемому интервалу, а значит являются корнями исходного уравнения.

2.2) x\geq 6

Тогда (1) примет вид

(x+3-(x-6-x+2))^2=0\\ (x+7)^2=0\\ x+7=0\\ x=-7

То есть корень не принадлежит рассматриваемому интервалу.

0,0(0 оценок)
Ответ:
АкадемеG
АкадемеG
28.04.2022 04:20

4

Объяснение:

\displaystyle (2 {sin}^{2} (x) - 3 \cos(x) ) \times \sqrt{ \tan(x) } = 0

а)ОДЗ:

{ tan(x) ≥0 (Т.к. подкоренное выражение всегда неотрицательно)

{ cos(x) ≠0 (Т.к. тангенс это синус, делённый на косинус,а на ноль делить нельзя)

Произведение равно нулю,когда хотя бы один из множителей равен нулю

1) 2sin²(x)-3cos(x) = 0

Из основного тригонометрического тождества sin²(x)+cos²(x) = 1 выразим синус

sin²(x) = 1-cos²(x)

2(1-cos²(x))-3cos(x) = 0

2-2cos²(x)-3cos(x) = 0|:(-1)

2cos²(x)+3cos(x)-2 = 0

Пусть cos(x) = t, -1 ≤ t ≤ 1, тогда

2t²+3t-2 = 0

D = 3²-4*2*(-2) = 9+16 = 25 = 5²

\displaystyle t_{1} = \frac{ - 3 + 5}{2 \times 2} = \frac{2}{4} = \frac{1}{2}

\displaystyle t_{2} = \frac{ - 3 - 5}{2 \times 2} = - \frac{8}{4} = - 2

Второй корень меньше -1,поэтому мы его рассматривать не будем

Вернёмся к замене

Если t = 0,5, тогда

cos(x) = 0,5

Это равенство распадается на совокупность двух:

[ x = arccos(0,5) + 2пn, n∈Z

[ x = -arccos(0,5) + 2пn, n∈Z

[ x = п/3 + 2пn, n∈Z

[ x = -п/3 + 2пn, n∈Z

Второй корень не подходит по ОДЗ,так что единственное решение этого равенства x = п/3 + 2пn, n∈Z

2)

\displaystyle \sqrt{ \tan(x) } = 0

\displaystyle { (\sqrt{ \tan(x) } ) }^{2} = {0}^{2}

\displaystyle \tan(x) = 0

\displaystyle \frac{ \sin(x) }{ \cos(x) } = 0

Дробь равна нулю,когда числитель равен нулю,а знаменатель не равен нулю

{ sin(x) = 0

{ cos(x) ≠ 0

{ х = пn, n∈Z

{ x ≠ п/2 + пn, n∈Z

Пересечений с ОДЗ нет,поэтому наше решение входит в ответ

б) Находим количество решений на отрезке [0;2П] ( см. вложение)

По рисунку мы видим,что у уравнения на данном отрезке 4 корня(0,п/3,п,2п)


В ответе укажите число решений, принадлежащих интервалу [0;2П] + дам лучший ответ​
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота