Заметим, что , то есть — целое число. Это означает, что , где ; Имеем: ; Теперь надо отметить, что число лежит между двумя кубами: и ; Пусть . Тогда ; Но , тогда . Решим это неравенство:
Докажем, что для решений нет. Действительно, касательная к в точке имеет вид ; Более того, для выпукла вниз (); Значит, для ; Осталось проверить значение 1, которое подходит.
Значит, и ; Если , то аналогично и неравенство уже справедливо для всех ; Но поэтому , что не имеет решений при отриц. . Здесь аналогично. Рассмотрим касательную в точке ; Тогда она имеет вид: ; По выпуклости вверх на интервале можно записать неравенство для : ; Тем самым, остается проверить значения и . Они не подходят, откуда заключаем, что решение единственно.
Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
Заметим, что , то есть — целое число. Это означает, что , где ; Имеем: ; Теперь надо отметить, что число лежит между двумя кубами: и ; Пусть . Тогда ; Но , тогда . Решим это неравенство:
Докажем, что для решений нет. Действительно, касательная к в точке имеет вид ; Более того, для выпукла вниз (); Значит, для ; Осталось проверить значение 1, которое подходит.
Значит, и ; Если , то аналогично и неравенство уже справедливо для всех ; Но поэтому , что не имеет решений при отриц. . Здесь аналогично. Рассмотрим касательную в точке ; Тогда она имеет вид: ; По выпуклости вверх на интервале можно записать неравенство для : ; Тем самым, остается проверить значения и . Они не подходят, откуда заключаем, что решение единственно.
ответ:
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше