Для этого надо построить графики функций, из которых состоит система, в одной системе координат, точки пересечения этих графиков будут решениями системы. 1)
график - прямая линия, для построения нужны 2 точки. x=0; y=-3; (0;-3) y=0; x=1,5; (1,5;0) строим график(см. вложение,синим цветом) как видно из графика, прямые пересекаются в одной точке => данная система имеет только одно решение
1)
график - прямая линия, для построения нужны 2 точки.
x=0; y=6,5; (0;6,5)
y=0; x=2,6 (2,6;0)
строим график(см. вложение, красным цветом)
2)
график - прямая линия, для построения нужны 2 точки.
x=0; y=-3; (0;-3)
y=0; x=1,5; (1,5;0)
строим график(см. вложение,синим цветом)
как видно из графика, прямые пересекаются в одной точке => данная система имеет только одно решение
{4x+2y=9
Их первого уравнения выразим х.
2х-5у=6
2х=5у+6
х = 5у/2 + 6/2
х = 2,5у+3
Подставим х=2,5у+3 во второе уравнение и получим:
4·(2,5у+3) + 2у = 9
10у+12+2у = 9
12у = 9 - 12
12у = - 3
у = - 3 : 12
у = - 1/4 = - 0,25
Находим х, подставив у = - 0,25 в уравнение х = 2,5у+3.
х = 2,5·(-0,25) + 3
х= - 0,625 + 3
х = 2,375
Проверка х = 2,375 и у = - 0,25 для первого уравнения:
2 · 2,375 -5·(-0,25)=6
4,75+1,25=6
6 = 6 - верное равенство.
Проверка х = 2,375 и у = - 0,25 для второго уравнения:
4 · 2,375+2 · (- 0,25) = 9
9,5 - 0,5 = 9
9 = 9 - верное равенство.
ответ: х = 2,375; у = - 0,25