б) электроотрицательности - As, Ge, S, Cl, O, P, Mg
в) радиуса атома - I, Zr, S, As, F, Te, N
Задание №3
Расположите высшие гидроксиды стронция, йода, молибдена, циркония и сурьмы в порядке убывания их кислотных свойств. Объясните причину такого изменения свойств гидроксидов. Приведите пример аналогичного изменения свойств на примере гидроксидов одного металла.
Область определения функции - это множество значений переменной х. В нашем случае - под знаком корня должно стоять выражение, принимающее неотрицательные значения, т.е. область определения - это решение неравенства х² - 9 ≥ 0. Решим неравенство методом интервалов.
Рассмотрим функцию у = х² - 9 и найдем те значения х, при которых функция у = х² - 9 принимает неотрицательные значения. Найдем ее нули:
х² - 9 = 0,
(х - 3)(х + 3) = 0,
х - 3 = 0 или х + 3 = 0,
х₁ = 3, х₂ = -3.
Отметим на координатной прямой интервалы, ограниченные найденными нулями:
+ - +
||
-3 3
х ∈ (-∞; -3] ∪ [3; +∞), т.е. область определения функции у = √(х² - 9) - это объединение промежутков (-∞; -3] ∪ [3; +∞).
Сколько спаренных и неспаренных электронов содержат эти атомы? Сколько неспаренных электронов содержат ионы Fe2+, Cu2+, As3- ?
Задание №2
Расположите элементы в порядке увеличения:
а) металлических свойств - Se, Li, Br, Rb, Cr, K, Sc
б) электроотрицательности - As, Ge, S, Cl, O, P, Mg
в) радиуса атома - I, Zr, S, As, F, Te, N
Задание №3
Расположите высшие гидроксиды стронция, йода, молибдена, циркония и сурьмы в порядке убывания их кислотных свойств. Объясните причину такого изменения свойств гидроксидов. Приведите пример аналогичного изменения свойств на примере гидроксидов одного металла.
Задание №4
Используя правило Гунда, приведите электронные и
у = √(х² - 9)
Область определения функции - это множество значений переменной х. В нашем случае - под знаком корня должно стоять выражение, принимающее неотрицательные значения, т.е. область определения - это решение неравенства х² - 9 ≥ 0. Решим неравенство методом интервалов.
Рассмотрим функцию у = х² - 9 и найдем те значения х, при которых функция у = х² - 9 принимает неотрицательные значения. Найдем ее нули:
х² - 9 = 0,
(х - 3)(х + 3) = 0,
х - 3 = 0 или х + 3 = 0,
х₁ = 3, х₂ = -3.
Отметим на координатной прямой интервалы, ограниченные найденными нулями:
+ - +
||
-3 3
х ∈ (-∞; -3] ∪ [3; +∞), т.е. область определения функции у = √(х² - 9) - это объединение промежутков (-∞; -3] ∪ [3; +∞).
ответ: (-∞; -3] ∪ [3; +∞).