нужно купить не менее 10 видов (что такое вид из условия не ясно, предположим, что это любой элемент одежды)
x = 2y
n*x + m*y + k*z <= S
n*2y + m*y + k*z <= S
y(2n + m) + kz <= S
y(40 + 25) + 50z <= 245
65y + 50z <= 245
Поскольку купить нужно максимальное кол-во элементов, то сначала купим как можно больше дешёвых элементов (рубашки и штаны), а что останется потратим на дорогие (куртки)
245:65 с остком будет 3 + остаток 50
т.е. y = 3
65*3 + 50z <= 245
195 + 50z <= 245
50z <= 245 - 195
50z <= 50
max z = 1
Таким образом, можно купить: 3 штанов, 6 рубашек и 1 куртку. Всего 10 элементов (видов).
В решении.
Объяснение:
Решите задачу с системы уравнений.
Найдите стороны прямоугольника ,если его площадь равна 96 м2 , а периметр равен 40 м.
х - первая сторона прямоугольника.
у - вторая сторона прямоугольника.
По условию задачи составляем систему уравнений:
х*у=96
2(х+у)=40
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х=96/у
2(96/у+у)=40
192/у+2у=40
Умножить уравнение на у, чтобы избавиться от дроби:
192+2у²=40у
2у²-40у+192=0
Разделить уравнение на 2 для упрощения:
у²-20у+96=0, квадратное уравнение, ищем корни.
D=b²-4ac =400-384=16 √D= 4
у₁=(-b-√D)/2a
у₁=(20-4)/2
у₁=8;
у₂=(-b+√D)/2a
у₂=(20+4)/2
у₂=12;
х=96/у
х₁=96/8
х₁=12;
х₂=96/12
х₂=8.
Получили две пары решений:
х₁=12; х₂=8
у₁=8; у₂=12.
Так как в условии задачи не определено, какая из сторон является длиной прямоугольника, а какая шириной, можно взять любую пару.
х₁=12 - первая сторона прямоугольника.
у₁=8 - вторая сторона прямоугольника.
Можно купить: 3 штанов, 6 рубашек и 1 куртку.
Объяснение:
Пусть
n - цена рубашки = 20 р; x - кол-во рубашек
m - цена штанов = 25 р; y - кол-во штанов
k - цена куртки = 50 р; z - кол-во курток
S - общая сумма = 245
нужно купить не менее 10 видов (что такое вид из условия не ясно, предположим, что это любой элемент одежды)
x = 2y
n*x + m*y + k*z <= S
n*2y + m*y + k*z <= S
y(2n + m) + kz <= S
y(40 + 25) + 50z <= 245
65y + 50z <= 245
Поскольку купить нужно максимальное кол-во элементов, то сначала купим как можно больше дешёвых элементов (рубашки и штаны), а что останется потратим на дорогие (куртки)
245:65 с остком будет 3 + остаток 50
т.е. y = 3
65*3 + 50z <= 245
195 + 50z <= 245
50z <= 245 - 195
50z <= 50
max z = 1
Таким образом, можно купить: 3 штанов, 6 рубашек и 1 куртку. Всего 10 элементов (видов).