Решение Чтобы избавиться от знака корня, возведем обе части во вторую степень и получим слева просто x+3, а справа сокращенное умножение квадрата суммы:
Приведем подобные члены и вычислим квадратное уравнение, приравняв результат к нулю:
График функции - парабола. Ветви вниз, так как коэффициент при .
Найдем корни квадратного уравнения:
Корни квадратного уравнения - точки пересечения с осью X. Так как условие неравенства - больше или равно, то интервал включает в себя значения корней уравнения. ответ: а) [-3;-2]
значит заданная окружность - окружность радиуса 5 и с центром в точке О(0;5),
отсюда следует что искомая окружность и заданная не могут касаться внутренне, так как их радиусы одинаковы
значит в данном случае внешнее касание в точке М(3;1) так как точка касания и центры окружностей лежат на одной пряммой, то обозначив через А(x;y) центр искомой окружности и используя векторы получим вектор ОМ=вектор МА (0-3;5-1)=(3-x;1-y) -3=3-x; 4=1-y
x=3+3=6 y=1-4=-3 A(6;-3) - центр второй окружности значит ее уравнение
Решение
Чтобы избавиться от знака корня, возведем обе части во вторую степень и получим слева просто x+3, а справа сокращенное умножение квадрата суммы:
Приведем подобные члены и вычислим квадратное уравнение, приравняв результат к нулю:
График функции - парабола. Ветви вниз, так как коэффициент при .
Найдем корни квадратного уравнения:
Корни квадратного уравнения - точки пересечения с осью X.
Так как условие неравенства - больше или равно, то интервал включает в себя значения корней уравнения.
ответ: а) [-3;-2]
значит заданная окружность - окружность радиуса 5 и с центром в точке О(0;5),
отсюда следует что искомая окружность и заданная не могут касаться внутренне, так как их радиусы одинаковы
значит в данном случае внешнее касание в точке М(3;1)
так как точка касания и центры окружностей лежат на одной пряммой, то
обозначив через А(x;y) центр искомой окружности и используя векторы получим
вектор ОМ=вектор МА
(0-3;5-1)=(3-x;1-y)
-3=3-x;
4=1-y
x=3+3=6
y=1-4=-3
A(6;-3) - центр второй окружности
значит ее уравнение
( <-- ответ)
----
или