1) Шаблон y=x²
Вершина в точке (2;-3)
Нули функции
(x-2)²-3=0 ⇒
(x-2)²=3
x-2= -√3 или х-2=√3
х=2-√3 или х=2+√3
2) Шаблон y=x²
Вершина в точке (-2;-1)
(x+2)²-1=0 ⇒
(x+2)²=1
x+2= -1 или х+2=1
х=-3 или х=-1
3) Шаблон y=x²
Вершина в точке (2,5;-3,4)
(x-2,5)²-3,4=0 ⇒
(x-2,5)²=3,4
x-2,5= -√3,4 или x-2,5=√3,4
х= 2,5 -√3,4 или х=2,5 +√3,4
4)Шаблон y= - x²
Вершина в точке (1;4)
-(x-1)²+4=0 ⇒
(x-1)²=4
x-1= -2 или x-1=2
х= -1 или х=3
5)Шаблон y= - x²
Вершина в точке (-3;-3)
-(x+3)²-3=0 ⇒
(x+3)²=-3
уравнение не имеет корней.
Парабола не пересекает ось Ох
6)Шаблон y= - x²
Вершина в точке (3,2;2,4)
-(x-3,2)²+2,4=0 ⇒
(x-3,2)²=2,4
x-3,2= - √2,4 или x-3,2= √2,4
x= 3,2 - √2,4 или x = 3,2+ √2,4
n=6
Объяснение:
известно, что формула перестановок :
Pn=n!, где n - количество элементов, участвующих в перестановках
при этом n!=1*2*...*(n-1)*n,
и 0!=1, 1!=1, 2!=1*2=2, 3!=1*2*3=6 и т.д.
Соответственно, в данной задаче Pn<724, требуется найти n max?
Отметим, что n - не отрицательное число,
то есть n≥0
Рассмотрим возможные варианты:
n=0, 0!=1
n=1, 1!=1
n=2, 2!=1*2=2
n=3, 3!=1*2*3=2*3=6
n=4, 4!=1*2*3*4=6*4=24
n=5, 5!=1*2*3*4*5=24*5=120
n=6, 6!=1*2*3*4*5*6=120*6=720
n=7, 7!=1*2*3*4*5*6*7=720*7=5040 > 724 - не подходит,
Следовательно, подходящее к условии задачи число n имеет следующее условие:
0≤n≤6, то есть n max = 6
1) Шаблон y=x²
Вершина в точке (2;-3)
Нули функции
(x-2)²-3=0 ⇒
(x-2)²=3
x-2= -√3 или х-2=√3
х=2-√3 или х=2+√3
2) Шаблон y=x²
Вершина в точке (-2;-1)
Нули функции
(x+2)²-1=0 ⇒
(x+2)²=1
x+2= -1 или х+2=1
х=-3 или х=-1
3) Шаблон y=x²
Вершина в точке (2,5;-3,4)
Нули функции
(x-2,5)²-3,4=0 ⇒
(x-2,5)²=3,4
x-2,5= -√3,4 или x-2,5=√3,4
х= 2,5 -√3,4 или х=2,5 +√3,4
4)Шаблон y= - x²
Вершина в точке (1;4)
Нули функции
-(x-1)²+4=0 ⇒
(x-1)²=4
x-1= -2 или x-1=2
х= -1 или х=3
5)Шаблон y= - x²
Вершина в точке (-3;-3)
Нули функции
-(x+3)²-3=0 ⇒
(x+3)²=-3
уравнение не имеет корней.
Парабола не пересекает ось Ох
6)Шаблон y= - x²
Вершина в точке (3,2;2,4)
Нули функции
-(x-3,2)²+2,4=0 ⇒
(x-3,2)²=2,4
x-3,2= - √2,4 или x-3,2= √2,4
x= 3,2 - √2,4 или x = 3,2+ √2,4
n=6
Объяснение:
известно, что формула перестановок :
Pn=n!, где n - количество элементов, участвующих в перестановках
при этом n!=1*2*...*(n-1)*n,
и 0!=1, 1!=1, 2!=1*2=2, 3!=1*2*3=6 и т.д.
Соответственно, в данной задаче Pn<724, требуется найти n max?
Отметим, что n - не отрицательное число,
то есть n≥0
Рассмотрим возможные варианты:
n=0, 0!=1
n=1, 1!=1
n=2, 2!=1*2=2
n=3, 3!=1*2*3=2*3=6
n=4, 4!=1*2*3*4=6*4=24
n=5, 5!=1*2*3*4*5=24*5=120
n=6, 6!=1*2*3*4*5*6=120*6=720
n=7, 7!=1*2*3*4*5*6*7=720*7=5040 > 724 - не подходит,
Следовательно, подходящее к условии задачи число n имеет следующее условие:
0≤n≤6, то есть n max = 6