Раз по реке она шла меньше времени при большем расстоянии, значит явно шла по течению. Пусть её собственная скорость V, время пути по реке t, тогда верны следующие соотношения(не забудем перевести минуты в часы): 36 = (V+2)*t, 35 = V * (t+1/20) Раскрываем скобки: 36 = Vt+2t 35=Vt+V/20 Вычитаем из второго уравнения первое: 1 = V/20 - 2t Выражаем скорость: V/20 = 1 + 2t V = 20 + 40 t Подставим это соотношение, например, в первое уравнение: 36=(20+40t+2)t 36 = 40 t^2 + 22 t 40 t^2 + 22 t - 36 = 0 Сокращаем: 20 t ^2 + 11 t - 18 = 0 Решаем квадратное уравнение: D = 11*11 + 4 *20*18 = 121 + 1440 = 1561 = 39,5 (округлённо) t = (-11+-(39,5)) / 40 = {-1,25; 0,7} Время отрицательным быть не может, единственный подходящий результат - 0,7 ч. Подставляем в полученное выражение скорости: V = 20 + 40 t = 20 + 40 * 0,7 = 48 км/ч. Хотя явно не очень сходится, даже со всеми округлениями. Возможно, в вычислениях ошибся, но ход решения примерно такой.
36 = (V+2)*t,
35 = V * (t+1/20)
Раскрываем скобки:
36 = Vt+2t
35=Vt+V/20
Вычитаем из второго уравнения первое:
1 = V/20 - 2t
Выражаем скорость:
V/20 = 1 + 2t
V = 20 + 40 t
Подставим это соотношение, например, в первое уравнение:
36=(20+40t+2)t
36 = 40 t^2 + 22 t
40 t^2 + 22 t - 36 = 0
Сокращаем:
20 t ^2 + 11 t - 18 = 0
Решаем квадратное уравнение:
D = 11*11 + 4 *20*18 = 121 + 1440 = 1561 = 39,5 (округлённо)
t = (-11+-(39,5)) / 40 = {-1,25; 0,7}
Время отрицательным быть не может, единственный подходящий результат - 0,7 ч. Подставляем в полученное выражение скорости:
V = 20 + 40 t = 20 + 40 * 0,7 = 48 км/ч.
Хотя явно не очень сходится, даже со всеми округлениями. Возможно, в вычислениях ошибся, но ход решения примерно такой.
10 см - длина и 4 см - ширина прямоугольника
Объяснение:
Перевод: Периметр прямоугольника равен 28 см, а его площадь 40 см². Найти стороны прямоугольника.
Дано:
ABCD - прямоугольник
P(ABCD) = 28 см
S(ABCD) = 40 см²
Найти: стороны прямоугольника.
Решение.
Пусть сторонами прямоугольника будут a и b, для определённости, a - длина и b - ширина (см. рисунок). По определению прямоугольника: a≥b.
Периметр прямоугольника определяется по формуле
P(ABCD) = 2·(a + b),
а площадь - по формуле
S = a·b.
На основе данных получим следующую систему уравнений:
Сначала решаем второе квадратное уравнение системы:
(14 - b)·b = 40 ⇔ 14·b - b² = 40 ⇔ b² -14·b + 40=0
D=(-14)² - 4·1·40 = 196 - 160 = 36 = 6²:
b₁=(14-6)/(2·1)= 8/2=4;
b₂=(14+6)/(2·1)=20/2=10.
Тогда
Но, по определению прямоугольника: a≥b. И поэтому ответом будет пара 10 и 4.