твет:
интервалы (0,5;├ 1] (1;├ 1,5] (1,5;├ 2] (2;├ 2,5]
частота 4 4 3 1
запишем все числа в порядке возрастания
0,6 0,8 0,9 1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 2,1
Теперь разобьем их на интервалы 0,5+0,5=1 1+0,5=1,5 1,5+0,5=2 2+0,5=2,5
Получилось 4 интервала составим интервальную таблицу
Объяснение:
ответ:: S6 = 10,2
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.
твет:
интервалы (0,5;├ 1] (1;├ 1,5] (1,5;├ 2] (2;├ 2,5]
частота 4 4 3 1
запишем все числа в порядке возрастания
0,6 0,8 0,9 1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 2,1
Теперь разобьем их на интервалы 0,5+0,5=1 1+0,5=1,5 1,5+0,5=2 2+0,5=2,5
Получилось 4 интервала составим интервальную таблицу
Объяснение:
запишем все числа в порядке возрастания
0,6 0,8 0,9 1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 2,1
Теперь разобьем их на интервалы 0,5+0,5=1 1+0,5=1,5 1,5+0,5=2 2+0,5=2,5
Получилось 4 интервала составим интервальную таблицу
ответ:: S6 = 10,2
Объяснение:
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.