Это область математики, прежде всего связанная с подсчетом, как средство и цель получения результатов, так и с определением свойств конечных структур. Она тесно связана со многими другими областями математики — алгеброй, геометрией, теорией вероятностей и применяется в различных областях знаний.
Теория вероятностей — раздел математики, изучающий случайные события, случайные величины, их свойства и операции над ними.
Вероятность — это степень возможности, что какое-то событие произойдет. Если у нас больше оснований полагать, что что-то скорее произойдет, чем нет — такое событие называют вероятным.
Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:
Дискретная случайная величина — величина, которая в результате испытания может принимать определенные значения с определенной вероятностью, то есть образовывать счетное множество.
Элементы множества можно пронумеровать. Они могут быть как конечными, так и бесконечными. Например: количество выстрелов до первого попадания в цель.
Непрерывная случайная величина — это такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка. Количество возможных значений непрерывной случайной величины бесконечно.
Вероятностное пространство — это математическая модель случайного эксперимента (опыта). Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, которая нужна, чтобы проанализировать его через теорию вероятностей.
Вероятностное пространство — это тройка (Ω, Σ, Ρ) иногда обрамленная угловыми скобками: ⟨ , ⟩ , где
Ω — это множество объектов, которые называют элементарными событиями, исходами или точками.
Σ — сигма-алгебра подмножеств , называемых случайными событиями;
Ρ — вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что .
а) На отрезке [π/6; 2·π/3] функция y=cosx убывает, поэтому:
наибольшего значения достигает в левой границе, то есть при x = π/6: y(π/6)=√3/2;наименьшего значения достигает в правой границе, то есть при x = 2·π/3: y(2·π/3) = -1/2
б) интервал (-π; π/4) содержит значения x=-π и x = 0, в которых функция y=cosx:
достигает наибольшего значения при x = 0: y(0) = 1;достигает наименьшего значения при x = -π: y(-π) = -1;
в) луч [-π/3; +∞) содержит значения x=0 и x = π, в которых функция y=cosx:
достигает наибольшего значения при x = 0: y(0) = 1;достигает наименьшего значения при x = π: y(π) = -1;
г) полуинтервал [-π/3; 3π/2) содержит значения x=0 и x = π, в которых функция y=cosx:
достигает наибольшего значения при x = 0: y(0) = 1;достигает наименьшего значения при x = π: y(π) = -1.
Это область математики, прежде всего связанная с подсчетом, как средство и цель получения результатов, так и с определением свойств конечных структур. Она тесно связана со многими другими областями математики — алгеброй, геометрией, теорией вероятностей и применяется в различных областях знаний.
Теория вероятностей — раздел математики, изучающий случайные события, случайные величины, их свойства и операции над ними.
Вероятность — это степень возможности, что какое-то событие произойдет. Если у нас больше оснований полагать, что что-то скорее произойдет, чем нет — такое событие называют вероятным.
Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:
Дискретная случайная величина — величина, которая в результате испытания может принимать определенные значения с определенной вероятностью, то есть образовывать счетное множество.
Элементы множества можно пронумеровать. Они могут быть как конечными, так и бесконечными. Например: количество выстрелов до первого попадания в цель.
Непрерывная случайная величина — это такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка. Количество возможных значений непрерывной случайной величины бесконечно.
Вероятностное пространство — это математическая модель случайного эксперимента (опыта). Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, которая нужна, чтобы проанализировать его через теорию вероятностей.
Вероятностное пространство — это тройка (Ω, Σ, Ρ) иногда обрамленная угловыми скобками: ⟨ , ⟩ , где
Ω — это множество объектов, которые называют элементарными событиями, исходами или точками.
Σ — сигма-алгебра подмножеств , называемых случайными событиями;
Ρ — вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что .
См. рисунок в приложении.
а) На отрезке [π/6; 2·π/3] функция y=cosx убывает, поэтому:
наибольшего значения достигает в левой границе, то есть при x = π/6: y(π/6)=√3/2;наименьшего значения достигает в правой границе, то есть при x = 2·π/3: y(2·π/3) = -1/2б) интервал (-π; π/4) содержит значения x=-π и x = 0, в которых функция y=cosx:
достигает наибольшего значения при x = 0: y(0) = 1;достигает наименьшего значения при x = -π: y(-π) = -1;в) луч [-π/3; +∞) содержит значения x=0 и x = π, в которых функция y=cosx:
достигает наибольшего значения при x = 0: y(0) = 1;достигает наименьшего значения при x = π: y(π) = -1;г) полуинтервал [-π/3; 3π/2) содержит значения x=0 и x = π, в которых функция y=cosx:
достигает наибольшего значения при x = 0: y(0) = 1;достигает наименьшего значения при x = π: y(π) = -1.