Чтобы уравнение kx² + 2(k+1)x+k+3=0 имело 2 корня надо чтоб его дискриминант был положителен, напишем формулу дискриминанта D = b² - 4ac D = (2(k+1))² - 4*1*(k+3) = 4*k² + 8*k + 4 - 4*k - 12 = 4*k² + 4*k - 8 как было сказано - дискриминант должен быть больше нуля 4*k² + 4*k - 8 > 0 разделим на 4 (или преобразуем его к приведенному виду) k² + k - 2 > 0 по теореме Виета корни его -2 и 1т.к. коэффициент при k² положительный ветки параболы смотрят вверх и функция k² + k - 2 меняет знак в своих конях -2 и 1, поэтому D > 0 при k < -2 и k > 1 Уравнение имеет два корня при k < -2 и k > 1
288 | 2 528 | 2
144 | 2 264 | 2
72 | 2 132 | 2
36 | 2 66 | 2
18 | 2 33 | 3
9 | 3 11 | 11
3 | 3 528 = 2⁴ · 3 · 11
1
288 = 2⁵ · 3²
НОД = 2⁴ · 3 = 48 - наибольший общий делитель
288 : 48 = 6 528 : 48 = 11
ответ: НОД (288 и 528) = 48.
D = b² - 4ac
D = (2(k+1))² - 4*1*(k+3) = 4*k² + 8*k + 4 - 4*k - 12 = 4*k² + 4*k - 8
как было сказано - дискриминант должен быть больше нуля
4*k² + 4*k - 8 > 0 разделим на 4 (или преобразуем его к приведенному виду)
k² + k - 2 > 0 по теореме Виета корни его -2 и 1т.к. коэффициент при k² положительный ветки параболы смотрят вверх
и функция k² + k - 2 меняет знак в своих конях -2 и 1, поэтому
D > 0 при k < -2 и k > 1
Уравнение имеет два корня при k < -2 и k > 1