Ну это совсем просто, главное выучить его раз и навсегда. (+) - положительное число, (-) - отрицательное число. Итак: (+) + (+) = (+) например, 5+7=12 (-) + (-)=(-) например, (-5)+(-7)=-12 (т.е. при сложении отрицательных чисел мы складываем их как положительные и перед результатом ставим минус) теперь непосредственно к вопросу: при сложении чисел с разными знаками отнимаем от большего числа меньшее и ставим знак большего числа (имеется в виду большего по модулю): (-5) + 7= 2; 7 больше 5, значит у 2 знак 7, т.е.+ 5+(-7)=-2, т.к. по модулю -7 больше 5. в умножении и делении еще проще: (-) * (+)=(-) здесь ничего от модуля не зависит (-) / (+)=(-)
Каждый сыграл в турнире N-1 партию (со всеми, кроме себя), т.е. все вместе сыграли N*(N-1) партий.
НО! Каждая партия игралась двумя участниками, т.е. при первом подсчета мы каждую отдельно сыгранную партию посчитали два раза (для первого участника и для второго), следовательно общее число сыгранных партий будет равно N*(N-1)/2.
Поскольку в шахматной партии разыгрывается ровно одно очко, то всего очков в турнире было разыграно столько, сколько было сыграно партий, т.е. N*(N-1)/2.
Игрок, занявший первое место выиграл все партии, а сыграл он N-1 партию, значит и очков он набрал ровно столько.
Следуя этим заключениям можем записать уравнение:
5*(N-1) = N*(N-1)/2 - (N-1)
Количество очков первого игрока, умноженное на пять, равно общему числу очков без учета набранных первым (т.е. количеству очков, набранных остальными участниками).
Теперь осталось решить уравнение. Делим его на (N-1).
5 = N/2 - 1
Вполне очевидно, что N>1, поэтому выполненное деление вполне допустимо (делим не на ноль).
N/2 = 6
N=12
Т.е. всего участников в турнире было 12
Победитель набрал 11 очков из 66 возможных, т.е. в 5 раз больше чем остальные.
(+) - положительное число, (-) - отрицательное число. Итак:
(+) + (+) = (+) например, 5+7=12
(-) + (-)=(-) например, (-5)+(-7)=-12 (т.е. при сложении отрицательных чисел мы складываем их как положительные и перед результатом ставим минус)
теперь непосредственно к вопросу:
при сложении чисел с разными знаками отнимаем от большего числа меньшее и ставим знак большего числа (имеется в виду большего по модулю):
(-5) + 7= 2; 7 больше 5, значит у 2 знак 7, т.е.+
5+(-7)=-2, т.к. по модулю -7 больше 5.
в умножении и делении еще проще:
(-) * (+)=(-) здесь ничего от модуля не зависит
(-) / (+)=(-)
Пусть в турнире участвовало N человек.
Каждый сыграл в турнире N-1 партию (со всеми, кроме себя), т.е. все вместе сыграли N*(N-1) партий.
НО! Каждая партия игралась двумя участниками, т.е. при первом подсчета мы каждую отдельно сыгранную партию посчитали два раза (для первого участника и для второго), следовательно общее число сыгранных партий будет равно N*(N-1)/2.
Поскольку в шахматной партии разыгрывается ровно одно очко, то всего очков в турнире было разыграно столько, сколько было сыграно партий, т.е. N*(N-1)/2.
Игрок, занявший первое место выиграл все партии, а сыграл он N-1 партию, значит и очков он набрал ровно столько.
Следуя этим заключениям можем записать уравнение:
5*(N-1) = N*(N-1)/2 - (N-1)
Количество очков первого игрока, умноженное на пять, равно общему числу очков без учета набранных первым (т.е. количеству очков, набранных остальными участниками).
Теперь осталось решить уравнение. Делим его на (N-1).
5 = N/2 - 1
Вполне очевидно, что N>1, поэтому выполненное деление вполне допустимо (делим не на ноль).
N/2 = 6
N=12
Т.е. всего участников в турнире было 12
Победитель набрал 11 очков из 66 возможных, т.е. в 5 раз больше чем остальные.
ответ: 12 человек участвовало в турнире.