Используем геометрическое определение вероятности события A — "встреча с другом состоится".Если площадь S(X) фигуры X разделить на площадь S(A) фигуры A , которая целиком содержит фигуру X, то получится вероятность того, что точка, случайно выбранная из фигуры X, окажется в фигуре A. Обозначим за x и y время прихода, 0≤x,y≤60 (минут), так как время ожидания с 13.00 до 14.00 равно 60 мин. В прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата OABC. Друзья встретятся, если между моментами их прихода пройдет не более 6 минут, то есть y-x<6 , y<x+6 (y>x) и x-y<6 , y>x-6 (y<x). Этим неравенствам удовлетворяют точки, лежащие в области Х. Для построения области Х надо построить прямые у=х+6 и у=х-6.Затем рассмотреть точки, лежащие ниже прямой у=х+6 и выше прямой у=х-6. Кроме этого точки должны находиться в квадрате ОАВС. Площадь области Х можно найти, вычтя из площади квадрата ОАВС площадь двух прямоугольных треугольников со сторонами (60-6)=54: S(X)=S(OABC)-2*S(Δ)=60²-2*1/2*54*54=3600-2916=684.
Обозначим за x и y время прихода, 0≤x,y≤60 (минут), так как время ожидания с 13.00 до 14.00 равно 60 мин. В прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата OABC. Друзья встретятся, если между моментами их прихода пройдет не более 6 минут, то есть
y-x<6 , y<x+6 (y>x) и
x-y<6 , y>x-6 (y<x).
Этим неравенствам удовлетворяют точки, лежащие в области Х.
Для построения области Х надо построить прямые у=х+6 и у=х-6.Затем рассмотреть точки, лежащие ниже прямой у=х+6 и выше прямой у=х-6.
Кроме этого точки должны находиться в квадрате ОАВС.
Площадь области Х можно найти, вычтя из площади квадрата ОАВС площадь двух прямоугольных треугольников со сторонами (60-6)=54:
S(X)=S(OABC)-2*S(Δ)=60²-2*1/2*54*54=3600-2916=684.
2.
ΔАВС является равнобедренным треугольником, значит, углы при его основании равны.
∠АСВ=∠АВС=70°
∠DBA - смежный с ∠АВС, значит,
∠DBA = 180° - ∠АВС = 180° - 70° = 110°
ответ: ∠DBA = 110°
3.
Весь треугольник ВСК равнобедренным треугольником, значит, против равных сторон ВК=СК лежат равные углы ∠ВСК=∠КВС=70°.
∠КВС и ∠DBA - вертикальные, поэтому они равны между собой.
∠КВС = ∠DBA = 70°.
ответ: ∠DBA = 70°
4.
Рассмотрим ΔАВD ΔBDC.
У них:
AB = BC - по условию
AD = DC - по условию
BD - общая
Знчит, ΔАВD = ΔBDC по трем сторонам.
Отсюда следует ∠DBA = ∠DBC = 40°
ответ: ∠DBA = 40°