13^26+9^20 Чтобы доказать что данное выражение делится на 10 достаточно доказать что сумма последних чисел будет оканчиваться на 0 Зная что, число 3 при возведение в степень оканчивается на 3^1=3 3^2=9 3^3=27 оканчивается на 7 3^4=81 оканчивается на 1 3^5=243 оканчивается на 3 и так будет повторятся через каждый 4 порядка ... следовательно в 26 степени число будет оканчиваться на 9 9^20=3^40 и исходя из вышеизложенного 3 в 40 степени будет оканчиваться на 1 получается 9+1=0 следовательно сумма чисел делится на 10
Чтобы доказать что данное выражение делится на 10 достаточно доказать что сумма последних чисел будет оканчиваться на 0
Зная что, число 3 при возведение в степень оканчивается на
3^1=3
3^2=9
3^3=27 оканчивается на 7
3^4=81 оканчивается на 1
3^5=243 оканчивается на 3 и так будет повторятся через каждый 4 порядка ... следовательно в 26 степени число будет оканчиваться на 9
9^20=3^40 и исходя из вышеизложенного 3 в 40 степени будет оканчиваться на 1 получается
9+1=0 следовательно сумма чисел делится на 10
с учётом ОДЗ запишем систему неравенств:
х - 1> 0 x > 1
x +1 > 0 x > -1
2x -1 > 0 x > 1/2
(x -1)(x +1) > 2x -1, ⇒ x² -2x > 0, ⇒ корни 0 и 2
-∞ -1 0 1/2 1 2 +∞
x > 1
x > -1
x > 1/2
x² -2x > 0
ответ: х ∈(2; +∞)