У этой задачи есть 2 варианта решения, тк в задаче не указано направление течения реки.
Предположим, что направление течения из А в В. -> первый катер(к1) двигается ПО течению реки, а второй катер(к2) ПРОТИВ(потому что он плывет в противоположном направлении).
1) 20+3= 23(км/ч)- скорость к1 ПО течению.
2) 16-3=13(км/ч)- скорость к2 ПРОТИВ течения.
3) так как катеры двигаются одновременно, то найдем их общую скорость:
23+13=36(км/ч)- общая скорость к2 и к1.
4) время=расстояние/скорость ->
72/36=2(ч)- через столько встретятся к1 и к2.
Теперь ситуация противоположная. Течение идёт из В в А. ->
1) 16+3=19(км/ч)- скорость к2 (тк теперь он плывет по течению)
2) 20-3=17(км/ч)- скорость к1
3) 17+19=36(км/ч)- общая скорость к1 и к2.
4) 72/36=2(ч)- через столько встретятся к1 и к2.
Как видишь, ответы получились одинаковые. Так что выбирай тот который понравился больше)
через 2 часа.
Объяснение:
У этой задачи есть 2 варианта решения, тк в задаче не указано направление течения реки.
Предположим, что направление течения из А в В. -> первый катер(к1) двигается ПО течению реки, а второй катер(к2) ПРОТИВ(потому что он плывет в противоположном направлении).
1) 20+3= 23(км/ч)- скорость к1 ПО течению.
2) 16-3=13(км/ч)- скорость к2 ПРОТИВ течения.
3) так как катеры двигаются одновременно, то найдем их общую скорость:
23+13=36(км/ч)- общая скорость к2 и к1.
4) время=расстояние/скорость ->
72/36=2(ч)- через столько встретятся к1 и к2.
Теперь ситуация противоположная. Течение идёт из В в А. ->
1) 16+3=19(км/ч)- скорость к2 (тк теперь он плывет по течению)
2) 20-3=17(км/ч)- скорость к1
3) 17+19=36(км/ч)- общая скорость к1 и к2.
4) 72/36=2(ч)- через столько встретятся к1 и к2.
Как видишь, ответы получились одинаковые. Так что выбирай тот который понравился больше)
f'(x) = 3x² +12x
3x² +12x = 0
x(3x +12) = 0
x = 0 или 3х +12 = 0
х = - 4
б)f(x)=2Sinx-x
f'(x) = 2Cosx -1
2Cosx -1 = 0
Cosx = 1/2
x = +-π/3 + 2πk, k ∈Z
2.Найдите промежутки возрастания и убывания функции:
f(x)=x^3-4x^2+5x-1
f'(x) = 3x² - 8x +5
3x² -8x +5 = 0
x₁ = 5/3, x₂=1
-∞ 1 5/3 +∞
+ - + это знаки 3x² -8x +5
при х ∈(-∞;1)∪(5/3; +∞) функция возрастает
при х ∈(1; 5/3) функция убывает
3.Найдите точки экстремума: f(x)= x^2-3/x-2
f'(x) = (2x(x -2) - x²)/(х-2)² = (2х² - 4х -х²)/(х -2)² = (х² -4х)/(х -2)²
(х² -4х)/(х -2)²= 0, ⇒ (х² -4х) = 0 , х₁ = 0, х₂ = 4
(х -2)²≠ 0, х≠2
-∞ 0 2 4 +∞
+ - - + это знаки (х² -4х)/(х -2)²
х = 0 - это точка максимума; х = 4 - это точка минимума , х = 2 - точка разрыва
4. Докажите что функция g(x) на множестве R является: возрастающей если g(x)=2x^5+4x^3+3x-7
g'(x) = 10x⁴ + 12x² + 3
эта производная при любом х положительна, а это значит, что данная функция возрастающая