Нод: разложим числа на множители 102|2 62|2 42|2 51|3 31|31 21|3 17|17 1| 7|7 1 1| 102=2*3*17 62=2*31 42=2*3*7 видим одинаковые простые множители "2". Значит НОД (102,62,42)=2*2*2=8 нок: также сначала раскладываем числа на простые множители как и в первом случае получаем: 102=2*3*17 62=2*31 42=2*3*7 ищем в разложении самого меньшего числа (42) множители не вошедшие в разложение большего (102). Это число - 7. Находим НОК (102,62,42)=2*3*17*7=714
Y = y(a) + y'(a)*(x - a) - уравнение касательной
Т.к. угол между положительным направлением оси Ох и касательной составляет α=45 градусов, значит: k = tgα = tg(45) = 1 - коэффициент при х в уравнении касательной.
y(a) = 2a^3 - 6a^2 + 7a - 9
y'(a) = 6a^2 - 12a + 7
Y = 2a^3 - 6a^2 - 7a - 9 + x*(6a^2 - 12a + 7) - a*(6a^2 - 12a + 7) = x*(6a^2 - 12a + 7) + 2a^3 - 6a^2 - 7a - 9 - 6a^3 + 12a^2 - 7a = x*(6a^2 - 12a + 7) - 4a^3 + 6a^2 - 14a - 9
6a^2 - 12a + 7 = 1
6a^2 - 12a + 6 = 0
a^2 - 2a + 1 = 0
(a - 1)^2 = 0, a=1
y(1) = 2 - 6 + 7 - 9 = -6
Координаты точки касания: (1; -6)
Уравнение касательной: Y = x - 4 + 6 - 14 - 9 = x - 21
разложим числа на множители
102|2 62|2 42|2
51|3 31|31 21|3
17|17 1| 7|7
1 1|
102=2*3*17
62=2*31
42=2*3*7
видим одинаковые простые множители "2". Значит НОД (102,62,42)=2*2*2=8
нок:
также сначала раскладываем числа на простые множители как и в первом случае
получаем:
102=2*3*17
62=2*31
42=2*3*7
ищем в разложении самого меньшего числа (42) множители не вошедшие в разложение большего (102). Это число - 7. Находим НОК (102,62,42)=2*3*17*7=714