Решение: Обозначим собственную скорость моторной лодки за (х) км/час, тогда скорость лодки по течению равна: (х+2) км/час, а против течения реки, скорость лодки равна: (х-2) км/час) Расстояние 60 км лодка проплыла за время: 60/(х+2) час, а расстояние 32 км, лодка проплыла за время: 32/(х-2) час А так как общее время в пути составило 5 часов, то: 60/(х+2)+32/(х-2)=5 (х-2)*60+(х+2)*32=(х+2)*(х-2)*5 60х-120+32х+64=5х²-20 5х²-20-92х+56=0 5х²-92х+36=0 х1,2=(92+-D)/2*5 D=√(8464-4*5*36)=√(8464-720)=√7744=88 х1,2=(92+-88)/10 х1=(92+88)/10 х1=18 х2=(92-88)/10 х2=0,4 - не соответствует условию задачи- низкий показатель для скорости моторной лодки Отсюда: Собственная скорость моторной лодки 18км/час
Обозначим собственную скорость моторной лодки за (х) км/час, тогда скорость лодки по течению равна:
(х+2) км/час, а против течения реки, скорость лодки равна:
(х-2) км/час)
Расстояние 60 км лодка проплыла за время:
60/(х+2) час, а расстояние 32 км, лодка проплыла за время:
32/(х-2) час
А так как общее время в пути составило 5 часов, то:
60/(х+2)+32/(х-2)=5
(х-2)*60+(х+2)*32=(х+2)*(х-2)*5
60х-120+32х+64=5х²-20
5х²-20-92х+56=0
5х²-92х+36=0
х1,2=(92+-D)/2*5
D=√(8464-4*5*36)=√(8464-720)=√7744=88
х1,2=(92+-88)/10
х1=(92+88)/10
х1=18
х2=(92-88)/10
х2=0,4 - не соответствует условию задачи- низкий показатель для скорости моторной лодки
Отсюда:
Собственная скорость моторной лодки 18км/час
б)Перенесём правую часть уравнения влевую часть уравнения со знаком минус.Уравнение превратится изa*(a - 3) = 2*a - 6вa*(a - 3) + -2*a + 6 = 0Раскроем выражение в уравненииa*(a - 3) - 2*a + 6Получаем квадратное уравнение 2 6 + a - 3*a - 2*a = 0 Это уравнение вида a*x^2 + b*x + c.Квадратное уравнение можно решитьс дискриминанта.Корни квадратного уравнения: ___ - b ± \/ D a1, a2 = , 2*a где D = b^2 - 4*a*c - это дискриминант.Т.к.a = 1b = -5c = 6, тоD = b^2 - 4 * a * c = (-5)^2 - 4 * (1) * (6) = 1Т.к. D > 0, то уравнение имеет два корня.a1 = (-b + sqrt(D)) / (2*a)a2 = (-b - sqrt(D)) / (2*a)a1 = 3a2 = 2