A,b,c могут считаться базисом, если определитель из столбцов их координат не равен 0. 4 3 -1det( 5 0 4) = -3*(5*2-4*2) - 1*(4*4-(-1)*5) = -27 - не равен 0, значит вектора 2 1 2a,b,c образуют базис, что и требовалось показать.Вектор d представим в виде:d = p*a + q*b + r*cТак как координаты d заданы, получим систему уравнений для коэффициентов p,q,r:4p + 3q - r = 55p + 4r = 72p + q + 2r = 8 q = 8-2p-2r тогда получим систему 2p+7r=19 5p+4r=7Решив, получим: p = -1, r = 3 и тогда q = 4Значит разложение выглядит так:d = -a + 4b + 3c.
1) Действия по решению линейного уравнения
y=9−2x
Поменяйте стороны местами, чтобы все переменные члены находились в левой части.
9−2x=y
Вычтите 9 из обеих частей уравнения.
−2x=y−9
Разделите обе части на −2.
−2
−2x
=
−2
y−9
Деление на −2 аннулирует операцию умножения на −2.
x=
−2
y−9
Разделите y−9 на −2.
x=
2
9−y
2) Действия по решению линейного уравнения
y=
x+3
x
Переменная x не может равняться −3, так как деление на ноль не определено. Умножьте обе части уравнения на x+3.
y(x+3)=x
Чтобы умножить y на x+3, используйте свойство дистрибутивности.
yx+3y=x
Вычтите x из обеих частей уравнения.
yx+3y−x=0
Вычтите 3y из обеих частей уравнения. Если вычесть любое число из нуля, то получится его отрицательный эквивалент.
yx−x=−3y
Объедините все члены, содержащие x.
(y−1)x=−3y
Разделите обе части на y−1.
y−1
(y−1)x
=−
y−1
3y
Деление на y−1 аннулирует операцию умножения на y−1.
x=−
y−1
3y
Переменная x не может равняться −3.
x=−
y−1
3y
, x
=−3
Объяснение: Где квадратик, там перечеркнутое равно