1. Из точек А и В в гранях двугранного угла опущены перпендикуляры АА 1 и ВВ 2 на ребро угла. Найдите длину отрезка АВ , если АА 1 =а , ВВ 1 =b 1 А 1 В 1 =с и двугранный угол равен α1 . Задача решена в учебнике п. 171, стр. 59. 2. У трехгранного угла (аbс ) двугранный угол при ребре с прямой, двугранный угол при ребре b равен ϕ, а плоский угол (bc ) равен γ (ϕ,γ< ). Найдите два других плоских угла α = ∠ (ab ), β = ∠(ас ) Задача решена в учебнике п. 172, стр. 60 3. У трехгранного угла один плоский угол равен γ, а прилегающие к нему двугранные углы равны φ (φ < ). Найдите два других плоских угла α и угол β, который образует плоскость угла γ с противолежащим ребром.
1) Верно. У пар-грамма смежные углы в сумме равны 180, поэтому внешний угол при одном угле равен второму углу. 2) √2 ~ 1,414, 2 + 1,414 = 3,414 < 3,5 - неверно. Сумма двух любых сторон треугольника должна быть больше третьей стороны. 3) Площадь круга S(кр) = pi*D^2/4 ~ 0,785*D^2 Квадрат, вписанный в круг, имеет диагональ, равную диаметру. d = D, сторона квадрата a = d/√2 = D/√2 Площадь квадрата S(кв) = a^2 = D^2/2 Отношение S(кв)/S(кр) = (D^2/2)/(0,785*D^2) = 1/(2*0.785) ~ 0,63 Нет, неверно. 4) Верно. Этот треугольник - прямоугольный, по т. Пифагора 2 + 6 = 8 При этом √8 = 2*√2, то есть катет равен половине гипотенузы. Значит, этот катет находится против угла 30 градусов.
2. У трехгранного угла (аbс ) двугранный угол при ребре с прямой, двугранный угол при ребре b равен ϕ, а плоский угол (bc ) равен γ (ϕ,γ< ).
Найдите два других плоских угла α = ∠ (ab ), β = ∠(ас )
Задача решена в учебнике п. 172, стр. 60
3. У трехгранного угла один плоский угол равен γ, а прилегающие к нему двугранные углы равны φ (φ < ). Найдите два других
плоских угла α и угол β, который образует плоскость угла γ с противолежащим ребром.
2) √2 ~ 1,414, 2 + 1,414 = 3,414 < 3,5 - неверно. Сумма двух любых сторон треугольника должна быть больше третьей стороны.
3) Площадь круга S(кр) = pi*D^2/4 ~ 0,785*D^2
Квадрат, вписанный в круг, имеет диагональ, равную диаметру.
d = D, сторона квадрата a = d/√2 = D/√2
Площадь квадрата S(кв) = a^2 = D^2/2
Отношение S(кв)/S(кр) = (D^2/2)/(0,785*D^2) = 1/(2*0.785) ~ 0,63
Нет, неверно.
4) Верно. Этот треугольник - прямоугольный, по т. Пифагора
2 + 6 = 8
При этом √8 = 2*√2, то есть катет равен половине гипотенузы.
Значит, этот катет находится против угла 30 градусов.