Ехал со скоростью x км/ч. Затратил на путь часов. Предполагал ехать со скоростью y км/ч, предполагал доехать за часов. Доехал быстрее на 1,5 часа, т.е.
При этом за час он проезжал на 1 км больше, чем планировал проезжать за 1,25 часа, то есть . Составим и решим систему:
Второй без системы): Скорость x км/ч. За час он проезжал x км. С предполагаемой скоростью проехал бы (x-1) км за 1,25 часа. Планируемая скорость км/ч. С планируемой скоростью проехал бы весь путь за часов,. но проехал за часов, что на 1 час меньше
При этом за час он проезжал на 1 км больше, чем планировал проезжать за 1,25 часа, то есть .
Составим и решим систему:
Второй без системы):
Скорость x км/ч. За час он проезжал x км. С предполагаемой скоростью проехал бы (x-1) км за 1,25 часа. Планируемая скорость км/ч.
С планируемой скоростью проехал бы весь путь за часов,. но проехал за часов, что на 1 час меньше
ответ: 16 км/ч.
f(x) = 4cos²x - 4cosx + 1, (2cox - 1)^2, с учётом IcosxI ≤ 1 составляем двойное неравенство и решив его, получаем:
min{4cos²x - 4cosx + 1} = 0, при x = - π/3 + 2πn и x π/3 + 2πn
max{4cos²x - 4cosx + 1} = 9, при x = - π + 2πn и x = π + 2πn
E(y) = [0 ; 9]
2) Найти наибольшее значение функции:
y = 4*sin(2*x)+4*(3^(1/2))*cos(2*x)
Находим первую производную функции:
y' = - 8√3*sin(2x) + 8*cos(2x)
Приравниваем ее к нулю:
- 8√3*sin(2x) + 8*cos(2x) = 0
x1 = 1/12π
x2 = -1.31
Вычисляем значения функции
f(1/12π) = 8
f(-1.31) = -3,46
ответ: fmin = -3,46, fmax = 8
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = -16sin(2x) - 16√3cos(2x)
Вычисляем:
y''(1/12π) = -32 < 0 - значит точка x = 1/12π точка максимума функции.
y''(-1.31) = 8 > 0 - значит точка x = -1.31 точка минимума функции.
3) Указать множество значений функции:
f(x) = 4cos3x·cos5x - 2cos2x + 11 с учётом IcosxI ≤ 1 составляем двойное неравенство и решив его, получаем:
E(y) = [9;13]