На изготовление четырех платьев и пяти юбок израсходовали двадцать шесть метров ткани, а на изготовление шести платьев и четырех юбок израсходовали тридцать два метра ткани. Сколько ткани потребуется на пошив одного платья и сколько ткани потребуется на пошив одной юбки?
х - ткани на 1 платье
у - ткани на 1 юбку
Согласно условию задачи составляем систему уравнений:
4х+5у=26
6х+4у=32
Разделим второе уравнение на 4 для упрощения:
4х+5у=26
1,5х+у=8
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
4 (м) ткани на 1 платье.
2 (м) ткани на 1 юбку.
Объяснение:
На изготовление четырех платьев и пяти юбок израсходовали двадцать шесть метров ткани, а на изготовление шести платьев и четырех юбок израсходовали тридцать два метра ткани. Сколько ткани потребуется на пошив одного платья и сколько ткани потребуется на пошив одной юбки?
х - ткани на 1 платье
у - ткани на 1 юбку
Согласно условию задачи составляем систему уравнений:
4х+5у=26
6х+4у=32
Разделим второе уравнение на 4 для упрощения:
4х+5у=26
1,5х+у=8
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
у=8-1,5х
4х+5(8-1,5х)=26
4х+40-7,5х=26
-3,5х=26-40
-3,5х= -14
х= -14/-3,5
х=4 (м) ткани на 1 платье.
у=8-1,5х
у=8-1,5*4
у=8-6
у=2 (м) ткани на 1 юбку.
Проверка:
4*4+5*2=26
6*4+4*2=32, верно.
"Дана функция y=x2−4. Построй график функции y=x2−4.
a) Координаты вершины параболы: ( ; )
(в пунктах б), в) и г) вместо −∞, пиши «−Б»; вместо +∞, пиши «+Б»).
б) При каких значениях аргумента значения функции отрицательны?
( ; ). в) При каких значениях аргумента функция возрастает? [ ; ).
г) При каких значениях аргумента функция убывает? ( ; ]
(Сравни свой график с представленным в шагах решения).
Объяснение:
a) Координаты вершины параболы: х₀=0/2=0 , у₀=0-4=-4 ; (0 ;-4 ) .
б) у<0 при х²-4<0
-------(+)------(-2)--------(-)--------(2)------(+) ,при х∈ (-2;2)
в) Функция возрастает при х≥0.
г) Функция убывает при х≤0.