Уравнение прямой на плоскости имеет в общем случае (когда прямая не параллельна ни одной из координатных осей) вид ax+by+c=0, где x и y - координаты любой точки, принадлежащей прямой. 1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox. 2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
Они встретятся тогда, когда между ними будет ровно круг. Т.е. велосипедист обгонит пешехода на ДЛИНУ КРУГА. L - длина круга, тогда 1.6vt-vt=L - условие, при котором первый обгонит второго на L, т.е. на круг 0.6vt=L vt=1,66l - т.е. пешеход со скоростью v с временем t должен быть на длине 1,66L для первого ОБГОНА, т.е. на расстоянии 0.66l от начала круга для второго обгона: 1,6vt-vt=2L vt=3,33l, т.е. пешеход должен быть на расстоянии 0,33 длины круга
на третий раз формула таже, vt=5l, т.е. обгон будет ровно на старте круга
1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox.
2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
L - длина круга, тогда
1.6vt-vt=L - условие, при котором первый обгонит второго на L, т.е. на круг
0.6vt=L
vt=1,66l - т.е. пешеход со скоростью v с временем t должен быть на длине 1,66L для первого ОБГОНА, т.е. на расстоянии 0.66l от начала круга
для второго обгона:
1,6vt-vt=2L
vt=3,33l, т.е. пешеход должен быть на расстоянии 0,33 длины круга
на третий раз формула таже, vt=5l, т.е. обгон будет ровно на старте круга
с четвертого раза всё повторяется
ОТВЕТ: 3 точки