Надо смотреть на общее число игрушек 10 и на общую сумму 53 можно составлять систему цравнений x+y+z=10 3x+5у+7z=53 и решать до бесконечности а попробуем обратить внимание на второе уравнение оно состоит из Нечетной суммы и суммы трех множителей, которые если x, y, z - нечетные, то произведение нечетное и если x, x, z - четные то произведение четное, и смотреть какая сумма получается четная или нечетная . Обратим внимание, что сумма вседа Четная, а 53 это нечетное число Рассмотрим как 10 раскладывается на игрушки к примеру 1-1-8 здесь сумма четная (два множителя нечетных и один четный), 1-2-7 - опять тоже самое. Вы никогда не разложите 10 или на 3 нечетных числа или чтобы было одно нечетное число - во всех остальных случаях 3x+5e+7z ВСЕДА ЧЕТНОЕ
Только это задача ближе к олимпиадной - чем просто из 8-го класса
можно составлять систему цравнений
x+y+z=10
3x+5у+7z=53
и решать до бесконечности а попробуем обратить внимание на второе уравнение оно состоит из Нечетной суммы и суммы трех множителей, которые если x, y, z - нечетные, то произведение нечетное и если x, x, z - четные то произведение четное, и смотреть какая сумма получается четная или нечетная .
Обратим внимание, что сумма вседа Четная, а 53 это нечетное число
Рассмотрим как 10 раскладывается на игрушки к примеру 1-1-8 здесь сумма четная (два множителя нечетных и один четный), 1-2-7 - опять тоже самое. Вы никогда не разложите 10 или на 3 нечетных числа или чтобы было одно нечетное число - во всех остальных случаях 3x+5e+7z ВСЕДА ЧЕТНОЕ
Только это задача ближе к олимпиадной - чем просто из 8-го класса
3x^ + 2x - 5 = 0
Найдем дискриминант квадратного уравнения:
D = b^ - 4ac = 22 - 4·3·(-5) = 4 + 60 = 64
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = -2 - √64 2·3 = (-2 - 8)÷6 =-10/6 = -5/3 ≈ -1.6666666666666667
x2 = -2 + √64 2·3 = (-2 + 8)÷6 =6/6 = 1
2уравнение:
5x^+3x−2=0
Коэффициенты уравнения:
a=5, b=3, c=−2
Вычислим дискриминант:
D=b2−4ac=32−4·5·(−2)=9+40=49
(D>0), следовательно это квадратное уравнение имеет 2 различных вещественных корня:
Вычислим корни:
x(1,2)=−b±√D÷2a
x1=−b+√D÷2a=−3+7÷2·5=4/10=0,4
x2=−b−√D÷2a=−3−7÷2·5=−10/10=−1
5x2+3x−2=(x−0,4)(x+1)=0
ответ: x1=0,4;x2=−1