нужно решить диофантовое уравнение от двух переменных в натуральных числаъ получим простым перебором находим "минимальное" решение в натуральных числах 7*3-5*4=1
где l є N {0}
тогда формула искомых чисех
где l є N {0}[/tex] первый член равен
50-й член равен
Сумма первых 50-ти равна
---- более просто можно было на первых членах проследить появление первого члена 17 и заметить что разность последовательности образованной с двух данных тоже является арифмитической прогрессией с разностью равной 35
для второй прогрессии
нужно решить диофантовое уравнение от двух переменных в натуральных числаъ
получим
простым перебором находим "минимальное" решение в натуральных числах
7*3-5*4=1
где l є N {0}
тогда формула искомых чисех
где l є N {0}[/tex]
первый член равен
50-й член равен
Сумма первых 50-ти равна
----
более просто можно было на первых членах проследить появление первого члена 17 и заметить что разность последовательности образованной с двух данных тоже является арифмитической прогрессией с разностью равной 35
давайте покажу два примера:
для решения задания нам для начала нужно знать теорему Виета
она выглядит вот так:
если наше квадратное уравнение выглядит так x² + px + q = 0, то
x1 + x2 = -p
x1 · x2 = q
судя по первому примеру -1+3=2
-1*3=-3
тогда наше уравнение будет выглядеть так х^2+2x-3=0
следущий пример точно также: -0,2+(-0,3)=-0,5
-0,2*(-0,3)=0,06
а уравнение-x^2-0.5x+0.06=0
Желаю удачи!