а) Точки, лежащие на оси Ox, имеют ординату, равную нулю. Значит, вторая координата вектора OM равна 0.
б) Точки, лежащие на оси Oy, имеют абсциссу, равную нулю. Значит, первая координата вектора OM равна 0.
в) Точки, лежащие в 1 четверти, имеют положительные абсциссу и ординату. Значит, координаты вектора OM положительны.
г) Точки, лежащие во 2 четверти, имеют отрицательную абсциссу и положительную ординату. Значит, первая координата вектора OM отрицательна, а вторая - положительна.
д) Точки, лежащие в 3 четверти, имеют отрицательные абсциссу и ординату. Значит, координаты вектора OM отрицательны.
е) Точки, лежащие в 4 четверти, имеют положительную абсциссу и отрицательную ординату. Значит, первая координата вектора OM положительна, а вторая - отрицательна.
а) Точки, лежащие на оси Ox, имеют ординату, равную нулю. Значит, вторая координата вектора OM равна 0.
б) Точки, лежащие на оси Oy, имеют абсциссу, равную нулю. Значит, первая координата вектора OM равна 0.
в) Точки, лежащие в 1 четверти, имеют положительные абсциссу и ординату. Значит, координаты вектора OM положительны.
г) Точки, лежащие во 2 четверти, имеют отрицательную абсциссу и положительную ординату. Значит, первая координата вектора OM отрицательна, а вторая - положительна.
д) Точки, лежащие в 3 четверти, имеют отрицательные абсциссу и ординату. Значит, координаты вектора OM отрицательны.
е) Точки, лежащие в 4 четверти, имеют положительную абсциссу и отрицательную ординату. Значит, первая координата вектора OM положительна, а вторая - отрицательна.
В решении.
Объяснение:
Постройте график функции у=х²+4х+4 и найдите координаты вершины параболы.
Дана функция у = х² + 4х +4;
Построить график.
Уравнение квадратичной функции, график - парабола со смещённым центром, ветви направлены вверх.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -5 -4 -3 -2 -1 0 1
у 9 4 1 0 1 4 9
По вычисленным точкам построить параболу.
Согласно графика, координаты вершины параболы: (-2; 0).