Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
х(-15х-1)=0
х₁=0 или -15х-1=0
-15х=1
х₂=-1/15
ОТВЕТ: 0 или -1/15
2.9x²-4x=0
х(9х-4)=0
х₁=0 или 9х-4=0
х₂=4/9
ОТВЕТ: 0 или 4/9
3.7x-2x² = 0
х(7-2х)=0
х₁=0 или 7-2х=0
х₂=3,5
ОТВЕТ: 0 или 3,5
4.3x²=10x
3х²-10х=0
х(3х-10)=0
х₁=0 или 3х-10=0
х₂=10/3
ОТВЕТ: 0 или 10/3
5.x²=0,7x
х²-0,7х=0
х(х-0,7)=0
х₁=0 или х-0,7=0
х₂=0,7
ОТВЕТ: 0 или 0,7
6.4x²-4x=22x
4х²-4х-22х=0
4х²-26х=0
2х(2х-13)=0
х₁=0 или 2х-13=0
х₂=13/2
ОТВЕТ: 0 или 13/2
7.4x²-x=x+x²-4x
4х²-х²-х+3х=0
3х²+2х=0
х(3х+2)=0
х₁=0 или 3х+2=0
х₂=-2/3
ОТВЕТ: 0 или -2/3
8. 8x²-4x+1=1-x
8х²-4х+1-1+х=0
8х²-3х=0
х(8х-3)=0
х₁=0 или 8х-3=0
х₂=3/8
ОТВЕТ: 0 или 3/8
9.2x²-5x=x(4x-1)
2x²-5x=4x²-х
4x²-2x²-х+5х=0
2х²+4х=0
2х(х+2)=0
х₁=0 или х+2=0
х₂=-2
ОТВЕТ: 0 или -2
10.x²-2(x-4)=4(5x+2)
х²-2х+8=20х+8
х²-2х+8-20х-8=0
х²-22х=0
х(х-22)=0
х₁=0 или х-22=0
х₂=22
ОТВЕТ: 0 или 22
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.