y=-x^2-4x - графиком функции является парабола, ветви направлены вниз
m=-b/2a = 4/2 = -2
y=-(-2)^2+4*2=4
(-2;4) - координаты вершины параболы
y=4+x - прямая, проходящая через точки (0;4), (-4;0)
Знайдемо обмежені лінії
\begin{gathered}-x^2-4x=4+x\\ x^2+5x+4=0\end{gathered}−x2−4x=4+xx2+5x+4=0
За т. Вієта: x_1=-1;\,\,\,\, x_2=-4x1=−1;x2=−4
Знайдемо площу фігури
\begin{gathered}\displaystyle \int\limits^{-1}_{-4} {(-x^2-4x-(4+x))} \, dx = \int\limits^{-1}_{-4} {(-x^2-5x-4)} \, dx =\\ \\ \\ =\bigg(- \frac{x^3}{3} - \frac{5x^2}{2}-4x\bigg)\bigg|^{-1}_{-4}= \frac{1}{3} - \frac{5}{2} +4- \frac{4^3}{3} + \frac{5\cdot4^2}{2} -16=4.5\end{gathered}−4∫−1(−x2−4x−(4+x))dx=−4∫−1(−x2−5x−4)dx==(−3x3−25x2−4x)∣∣∣∣∣−4−1=31−25+4−343+25⋅42−16=4.5
Объяснение:
Это
y=-x^2-4x - графиком функции является парабола, ветви направлены вниз
m=-b/2a = 4/2 = -2
y=-(-2)^2+4*2=4
(-2;4) - координаты вершины параболы
y=4+x - прямая, проходящая через точки (0;4), (-4;0)
Знайдемо обмежені лінії
\begin{gathered}-x^2-4x=4+x\\ x^2+5x+4=0\end{gathered}−x2−4x=4+xx2+5x+4=0
За т. Вієта: x_1=-1;\,\,\,\, x_2=-4x1=−1;x2=−4
Знайдемо площу фігури
\begin{gathered}\displaystyle \int\limits^{-1}_{-4} {(-x^2-4x-(4+x))} \, dx = \int\limits^{-1}_{-4} {(-x^2-5x-4)} \, dx =\\ \\ \\ =\bigg(- \frac{x^3}{3} - \frac{5x^2}{2}-4x\bigg)\bigg|^{-1}_{-4}= \frac{1}{3} - \frac{5}{2} +4- \frac{4^3}{3} + \frac{5\cdot4^2}{2} -16=4.5\end{gathered}−4∫−1(−x2−4x−(4+x))dx=−4∫−1(−x2−5x−4)dx==(−3x3−25x2−4x)∣∣∣∣∣−4−1=31−25+4−343+25⋅42−16=4.5
Объяснение:
Это
mв = 5 кг
t₁ = 15°C
t₂ = 100°C
Q ---? кДж
Решение.
Q = c*m*(t₂ -t₁), где m - масса,кг; t₂ и t₁ - конечная и начальная температуры,°С; с - удельная теплоемкость вещества, Дж/(кг*°С)
При нагревании воды тепло тратится также и на нагревание железного котла.
Q = Qж + Qв
Поскольку в задании не приведены удельные теплоемкости, берем
сж = 460Дж/(кг*°С) ; св = 4200Дж/(кг*°С),
t₂ -t₁ = 100 - 15 = 85 (°C) ( расчет ведем в градусах Цельсия).
Q = 460 * 1,5 * 85 + 4200 * 5 * 85 = (690 + 21000) *85 = 21690 * 85 = 1843650 (Дж) = 1843,65 (кДж)
ответ; 1843,65 кДж