Можно решить через логарифмы Количество знаков в числе N равно [lg(N)] + 1. Не менее 9 - это больше 8. Не более 11 - это меньше 12 lg(m^3) = 3*lg(m) > 8 lg(m^4) = 4*lg(m) < 12 Сокращаем lg(m) > 8/3 lg(m) < 3 Получаем. lg(m^12) = 3*4*lg(m) = 3*4*8/3 = 32 ответ: 32 знака
m^3 >= 100000000 = 10^8
m^4 < 100000000000 = 10^11
Извлекаем корни
m >= 10^(8/3) > 464
m < 10^(11/4) < 563
464^12 ~ 9,9*10^31 - 32 знака
500^12 = 5^12*100^12 = 244140625*10^24 - 32 знака
563^12 ~ 1,01*10^33 - 33 знака
ответ: 32 знака.
Можно решить через логарифмы
Количество знаков в числе N равно [lg(N)] + 1.
Не менее 9 - это больше 8. Не более 11 - это меньше 12
lg(m^3) = 3*lg(m) > 8
lg(m^4) = 4*lg(m) < 12
Сокращаем
lg(m) > 8/3
lg(m) < 3
Получаем.
lg(m^12) = 3*4*lg(m) = 3*4*8/3 = 32
ответ: 32 знака
x = π : (π/2 + 2πn), n Є Z
1) n = 0
x= 2
2) n = 1
x = π : (π/2 + 2π)= π : 2,5π = 0,4
3) n = 2
x = π : (π/2 + 2π*2) = π : 4,5π = 2/9
4) n = 3
x = π: (π/2 + 2π*3) = π: 6,5π= 2/13~0,16...
5)n = 4
x =π: (π/2 + 2π*3) = π: 8,5π = 2/17~0,11...
увидим закономерность в ответах: 2/5; 2/9; 2/13; 2/17; 2/21; 2/25; 2/29; 2/33; 2/37; ... надо просто выяснить сколько таких чисел попадут в указанный промежуток.
2/21~0,09... 2/25= 0,08; 2/29 = 0,06...; 2/33= 0,06...; 2/37 = 0,054...; 2/41= 0,048...