Каноническое уравнение окружности: (x-a)^2+(y-b)^2=R^2, где (a;b) - центр радиуса, R - радиус.
Ищем точку пересечение графиков:
{y=log2(x+1) {y=5-x log2(x+1)=5-x Так как слева возрастающая функция, а справа убывающая, то возможен только один корень уравнения, его легко угадать, это x=3 y=5-3=2 => (3;2) - точка пересечения и центр радиуса окружности
Ищем точку пересечение графиков:
{y=log2(x+1)
{y=5-x
log2(x+1)=5-x
Так как слева возрастающая функция, а справа убывающая, то возможен только один корень уравнения, его легко угадать, это x=3
y=5-3=2 => (3;2) - точка пересечения и центр радиуса окружности
=> (x-3)^2+(y-2)^2=0.25 - искомое уравнение окружности