Понятно, что х - двузначное число. Пусть x=10a+b, где а, b - его цифры. 1) Если a+b - однозначное число, то его сумма цифр совпадает с ним и х+у+z=(10a+b)+(a+b)+(a+b)=60, откуда 12а+3b=60, т.е. 4а+b=20. Возможны следующие варианты: a=5, b=0; а=4, b=4. Если a<4, то b>8 и тогда а+b не является однозначным. 2) Если а+b - двузначное, то его первая цифра равна 1, а вторая равна a+b-10, т.е. z=1+(a+b-10)=а+b-9. Итак, x+y+z=(10a+b)+(a+b)+(a+b-9)=60, откуда 12а+3b=69, т.е. 4а+b=23. Возможен только вариант а=4, b=7, т.к. .если a=5, то b=3 и a+b=8 - однозначное, а все остальные, очевидно, не подходят. Значит итоговый ответ: число х может быть 50, 44 или 47.
1) Если a+b - однозначное число, то его сумма цифр совпадает с ним и
х+у+z=(10a+b)+(a+b)+(a+b)=60, откуда 12а+3b=60, т.е. 4а+b=20. Возможны следующие варианты: a=5, b=0; а=4, b=4. Если a<4, то b>8 и тогда а+b не является однозначным.
2) Если а+b - двузначное, то его первая цифра равна 1, а вторая равна a+b-10, т.е. z=1+(a+b-10)=а+b-9. Итак,
x+y+z=(10a+b)+(a+b)+(a+b-9)=60, откуда 12а+3b=69, т.е. 4а+b=23.
Возможен только вариант а=4, b=7, т.к. .если a=5, то b=3 и a+b=8 - однозначное, а все остальные, очевидно, не подходят.
Значит итоговый ответ: число х может быть 50, 44 или 47.
Все эти уравнения - биквадратные, то есть, такие, которое сводятся к квадратным с замены x^2=t.
1. x^4-50x^2+49=0
Замена x^2=t, t>=0
t^2-50t+49=0
D=2500-4*49=2304=48^2
t = (50+48)/2 = 49
t = (50-48)/2 = 1
x^2=49
x^2=1
x = +-7
x = +-1
2. x^4-5x^2-36=0
Замена x^2=t, t>=0
t^2-5t-36=0
D=25-4*(-36)=169=13^2
t=(5+13)/2 = 8
t=(5-13)/2=-4<0 - не удовлетворяет ОДЗ
x^2=8
х = +-2√2
3. 4х^4-21х^2+5=0
Замена x^2=t, t>=0
4t^2-21t+5=0
D=441-4*4*5=361=19^2
t = (21+19)/8=5
t = (21-19)/8=1/4
x^2 = 5
x^2 = 1/4
x = +-√5
x = +-1/2
4. 3x^4+8x^2-3=0
Замена x^2=t, t>=0
3t^2+8t-3=0
D=64-4*3*(-3)=100=10^2
t=(-8+10)/6=1/3
t=(-8-10)/6=-3<0 - не удовлетворяет ОДЗ
x^2=1/3
x = +-1/√3 = +-√3/3
5. x^4-82x^2+81=0
Замена x^2=t, t>=0
t^2-82t+81=0
По теореме Виета:
t=81
t=1
x^2=81
x^2=1
x=+-9
x=+-1